
INSTRUKĊNI KNIŻKA ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ INSTRUCTION MANUAL

. پورن

OSCILOSKOP ОСЦИЛІЛОСКОПІ OSCILIOSCOPE

K. p. TESLA Brno vyrábí elektronické měřicí přístroje určené pro laboratorní, dílenské a servisní účely.

- - měřiče napětí a proudů
- -- měřiče hodnot elektrických obvodů
- měříče času a kmitočtu a čítače
- generátory
- -- osciloskopy
- měřiče parametrů polovodičů
- --- normály a kalibrační zařízení
- -- jiné elektronické měřicí přístroje
- --- spektrometry NMR
- elektronové mikroskopy

К. п. ТЕСЛА Брно выпускает электронные измерительные приборы в исполнении для лабораторий, производственных цехов и участков технического обслуживания.

- электронные измерители напряжения и тока
- -- электронные измерштели нараметров электрических ценей
- -- тенераторы
- --- осциялосконы
- электронные измерители нараметров полупроводников
- -- стандарты и устройства для калибровки
- остальные электронные измерительные приборы
- -- сисктромстры ЯМР
- --- электронные микроскопы

TESLA Brno, Concern Corp. produces electronic measuring instruments designed for laboratory, workshop and service purposes.

- --- Electronic time and frequency meters and counters
- ---- Generators
- Oscilloscopes
- -- Parameter and semiconductor meters
- --- Standards and calibrating devices
- --- Sundry electronic instruments
- NMR Spectrometers
- Electron microscopes

BM 566A

Výrobní číslo: Заводской номер: Production No.:

OSCILOSKOP

Osciloskop BM 566A je přenosný tranzistorový širokopásmový osciloskop, který svými technickými vlastnostmi splňuje vysoké nároky laboratorních měření. Šíře pásma vertikálního zesilovače 0 až 120 MHz, vychylovací činitel 10 mV/díl až 5 V/díl, dvoukanálový provoz. Časové základny 0,5 s/díl až 0,05 µs/díl s možností zpožďování při současném zobrazení obou základen.

осциллоскоп

Осциллоскоп ВМ 566А — это переносный транзисторный широкополосный осциллоскоп, который благодаря своим техническим параметрам удовлетворяет жестким требованиям лабораторных измерений. Ширина полосы усилителя вертикального отклонения 0—120 МГц, коэффициент отклонения 10 мВ/деление — 5 В/деление, двухканальный режим работы. Генераторы развертки 0,5 с/деление — 0,05 мкс/деление с возможностью задержки при одновременном изображении с помощью обоих генераторов развертки.

OSCILLOSCOPE

This instrument is a portable transistorized wideband oscilloscope, the technical parameters of which meet the high requirements of exact laboratory measurements.

Bandwidth of the vertical amplifier: 0 to 120 MHz. Deflection coefficient range: 10 mV/div. to 5 V/div. Double-channel operation.

Two time bases of 0.5 s/div. to 0.05 μ s/div. range, with facility for delay during simultaneous display of the two time bases.

Výrobce: Завод-изготовитель: Makers:

TESLA Brno, k. p., Purkyňova 99, 612 45 Brno, ČSSR

OBSAH

	3
1. Rozsah použití	3
	4
	8
A Princip činnosti	-
	12
	13
a příprava pristroje k provozatí6. Návod k obsluze a používání	10
	04
7. Popis mechanické konstrukce	34
 Popis mechanicke konstructure Podrobný popis zapojení 	35
8. Podrobny popis zapojeni i	55
 Podrobny popis zapojenia Pokyny pro údržbu 	64
9. Pokyny pro udržbu 10. Pokyny pro opravy	67
10. Pokyny pro opravy 11. Pokyny pro dopravu a skladování.	
	68
12. Údaje o záruce	69
 12. Údaje o záruče 13. Rozpis elektrických součástí 	00
14. Přílohy	
14. 11000	

Vzhledem k rychlému vývoji světové elektroniky mění se obvody a přistupují a zlepšují se součásti našich přístrojů. Někdy vinou tisku a požadavků expedice se nám nepodaří zanést tyto změny do tištěných příruček. Změny se proto v případě potřeby uvádějí na zvláštním listě.

СОДЕРЖАНИЕ

1. Назначение
L A A A A A A A A A A A A A A A A A A A
MARCHIVALAUM
a Mustoukulad DO ODCHV/Kuldanula
 Описание механи тоста В. Подробное описание схемы
8. Подробное описание окельство
9. Указаниая по уходу
 Условия гарантии Спецификация электрических деталей
14. Приложения
1-4. Tribana and

CONTENTS

		3
3	1. Scope of application	3
3	- o stanto of a complete consignment	4
4		8
8	A Principle of operation.	0
0		12
12		13
12	6. Instructions for use and attendance	
13		34
34	7. Description of mechanical design	35
35		55
55		64
64	Lang for ronalis	67
04	10. Instructions for transport and storage	
67		68
68	12. Guarantee	
69	12. Guarantee 13. List of electrical components	
00	14. Enclosures	

Ввиду бурного развития мировой электроники изменяются схемы, появляются новые и совершенствуются детали наших приборов.

Иногда по вине печати и требований отправления нам не удается внести изменения в печатные пособия.

В этом случае изменения указываются на специальном листе.

Owing to the rapid development of electronics in the world, the circuits of our instruments are altered and components of new types or improved design are

Sometimes, due to printing terms or the requirement of speedy shipping, it is impossible to include a description of such alterations in the appropriate printed

manual. Therefore, if necessary, such alterations are given in a loose leaf.

1. ROZSAH POUŽITÍ

Osciloskop BM 566A je přenosný tranzistorový širokopásmový osciloskop, který svými technickými parametry splňuje vysoké nároky laboratorních měření.

Vestavěný dvoukanálový vertikální zesilovač s velkou citlivostí zobrazení v kmitočtovém pásmu 0 až 120 MHz umožňuje zobrazení dvou měřených průběhů buď současně nebo každého jednotlivě. Možné je i diferenciální zobrazení napětí mezi dvěma měřicími body. Při zobrazení X—Y je zajištěna plná citlivost, stejná jako při ostatních druzích činnosti.

Rozsah kalibrovaných rychlostí časové základny i dostatečný jas stopy na stínítku obrazovky splňují požadavky měření impulsů. Osciloskop vedle běžných způsobů zobrazení umožňuje současné zobrazení průběhů střídavě rozvinutých rychlostí jedné i druhé základny.

1AK 063 70

1AK 063 72

1AK 645 63

1AK 641 63

1AK 641 94

1AK 895 43

1AK 058 69

1AF 858 41

T 630 mA/250 V

T 1.25 A/250 V

2. SESTAVA ÚPLNÉ DODÁVKY

2.1. Základní příslušenství dodávané s přístrojem BM 566A

Sonda BP 7721
Sonda BP 7723
Kabel
Kabel
Kabel
Vidlice
Průchozí zátěž
Svorka
Pojistková vložka
Pojistková vložka
Instrukční knížka
Balicí list
Záruční list

1. НАЗНАЧЕНИЕ

Осциллоскоп ВМ 566А — это переносный транзисторный широкополосный осциллоскоп, который благодаря своим техническим параметрам удовлетворяет жестким требованиям лабораторных измерений.

Встроенный двухканальный усилитель вертикального отклонения с высокой чувствительностью в диалазоне частот 0-120 МГц дает возможность изображать два измеряемых сигнала одновременно или по отдельности. Имеется возможность и дифференциального изображения напряжения между двумя измерительными точками. При изображении Х-Ү обеспечена полная чувствительность, как и при остальных режимах работы. Диапазон калиброванных скоростей развертки и достаточная яркость пятна на экране трубки удовлетворяют требованиям, предъявляемым импульсными измерениями. Осциллоскоп, кроме обычных способов изображения. дает возможность изображения сигналов с чередующейся разверткой, осуществляемой от одного и второго генераторов развертки.

2. КОМПЛЕКТНОСТЬ ПОСТАВКИ

2.1. Основные принадлежности, поставляемые с прибором ВМ 566А

2 ks Зонд ВР 7721 1AK 063 70 1 шт. 2 ks Зонд ВР 7723 1AK 063 72 2 шт. Кабель 1AK 645 63 1 ks 1 шт. 2 ks Кабель 1AK 641 63 2 шт. 1 ks Кабель 1AK 641 94 1 шт. 1AK 895 43 2 ks Вилка 2 шт. 1AK 058 69 2 ks Проходная нагрузка 2 шт. 1AF 858 41 4 ks Зажим 4 IIIT 2ks Вставка предохранителя Т 630 мА/250 В 2 шт. Вставка предохранителя Т 1,25 А/250 В 2 шт. 2ks Инструкция по эксплуатации 1 ks 1 шт. 1 ks Упаковочный лист 1 WT. 1 ks Гарантийное свидетельство 1 шт.

1. SCOPE OF APPLICATION

The BM 566A instrument is a portable transistorized wide-band oscilloscope, the technical parameters of which meet the high requirements of exact laboratory measurements.

The built-in double-channel vertical amplifier has high display sensitivity within the frequency band of 0 to 120 MHz and enables the display of two measured phenomena either simultaneously, or each separately. The differential display of the voltage between two measured points is also feasible. In the mode X—Y display, full sensitivity is ensured, the same as in all the other modes of operation. The range of the calibrated time base speeds, as well as the adequate brightness of the trace on the CRT screen, meet the requirements for carrying out pulse measurements. In addition to the routine modes of display, this oscilloscope enables the simultaneous display of a waveform expanded by the speeds of the first and second time bases alternately.

2. CONTENTS OF A COMPLETE CONSIGNMENT

2.1. Basic accessories supplied with the BM 566A oscilloscope

. .	2 pcs.	Probe BP 7721	1AK 063 70
		Probe BP 7723	1AK 063 72
		Cable ·	1AK 645 63
-	2 pcs.	Cable	1AK 641 63
	1 pc.	Cable	1AK 641 94
	2 pcs.	Plug	1AF 895 43
	2 pcs.	Feed-through load	1AK 058 69
		Terminal	1AF 858 41
- - - - - - - - - - - - - - - - - - -		Fuse cartridge	T 630 mA/250 V
		Fuse cartridge	T 1.25 /250 V
		Instruction Manual	
	1 pc.	Packing Note	
•	1 pc.	Guarantee Certificate	

2.2. Charakteristické vlastnosti základního příslušenství

- Sonda BP 7721 dělicí poměr 1×. Kmitočtový rozsah 0 až 15 MHz. Vstupní odpor 1 M Ω . Vstupní kapacita < 45 pF + vstupní kapacita osciloskopu.
- Sonda BP 7723 dělicí poměr 10×. Kmitočtový rozsah ve spojení s BM 566A 120 MHz.
 - Vstupní odpor 1 MΩ. Vstupní kapacita 11 pF ±1 pF (vstup osciloskopu 25 pF +2 pF).

Max. vstupní napětí 250 V (stejnosměrné včetně střídavé superpozice).

- Kabel 1AK 645 63 Koaxiální kabel 50 Ω o délce 1 m s jedním konektorem BNC s dvěma banánky \varnothing 2,3 mm. Slouží k propojení vstupu vertikálního zesilovače s výstupem kalibrátoru nebo k propojení s jinými zařízeními.
- Kabel 1AK 641 63 Koaxiální kabel 50 Ω \oslash 5 mm o délce 1 m s dvěma konektory BNC. Slouží k propojení s jinými zařízeními.
- Kabel 1AK 641 94 Koaxiální kabel 50 Ω o délce 1 m s jedním konektorem BNC se dvěma banánky Ø 4 mm. Slouží k propojení s jinými zařízeními.
- Vidlice 1AF 895 43 Konektor BNC 50 Ω slouží k sestavení zvláštního kabelu. Průchozí zátěž 1AK 058 69 – Slouží k připojení vstupů os-

ciloskopu při měření v obvodech s impedancí 50 Ω.

3. TECHNICKÉ ÚDAJE

3.1. Základní údaje

3.1.1. Obrazovka

Typ: 11L01011 Stinitko: 80×95 mm Dosvit: střední Anodové napětí: 2 000 V Urychlovací napětí: 14 000 V Vychylování: v obou směrech statické, symetrické

Max. využitelná plocha stínítka: 48×80 mm

2.2. Характерные параметры основных принадлежностей

- Зонд ВР 7721 коэффициент делания 1×. Диапазон частот 0 до 15 МГц. Входное сопротивление
 - 1 МОм. Входная емкость < 45 пФ + входная емкость осциллоскопа.
- Зонд ВР 7723 коэффициент деления 10×. Диапазон частот в комплекте с ВМ 566А 120 МГц.
 - Входное сопротивление 1 МОм.
 - Входная емкость 11 пФ ±1 пФ (вход осциллоскопа 25 пФ ±2 пФ).
 - Макс. входное напряжение 250 В (постоянное включая наложение переменной составляющей).
- Кабель 1АК 645 63 коаксиальный кабель 50 Ом длиной 1 м с одним разъемом BNC и двумя банановыми штепселями Ø 2,3 мм. Он служит для подключения входа усилителя вертикального отклонения с выходом калибратора или для соединения с другими устройствами.

Кабель 1АК 641 63 — коаксиальный кабель 50 Ом Ø 5 мм длиной 1 м с двумя разъемами BNC. Он служит для соединения с другими устройствами.

Кабель — 1АК 641 94 — коаксиальный кабель 50 Ом длиной 1 м с одним разъемом BNC и двумя банановыми штепселями Ø 4 мм. Он служит для подключения к другим устройствам.

- Вилка 1AF 895 43 гнездо BNC 50 Ом служит для образования специального кабеля.
- Проходная нагрузка 1АК 058 69 служит для подключения входов осциллоскопа при измерении в цепях с волновым сопротивлением 50 Ом.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

3.1. Основные данные

3.1.1. Электронно-лучевая трубка

Тип: 11Л0101И Экран: 80×95 мм Время послесвечения: среднее Напряжение анода: 2 000 В Ускоряющее напряжение: 14 000 В Отклонение: в обоих направлениях статическое, симметричное Макс. полезная площадь экрана: 48×80 мм

2.2. Characteristic properties of the basic accessories

Probe BP 7721 - dividing ratio 1 times. Frequency range 0 to 15 MHz. Input resistance 1 M Ω . Input capacitance <45 pF + input capacitance of the oscilloscope.

Probe BP 7723 – dividing ratio 10 times. Frequency range with connection to BM 566A 120 MHz.

Input resistance 1 MΩ. Input capacitance 11 pF \pm 1 pF (the input of the oscilloscope 25 pF ±2 pF).

Max. input voltage 250 V (DC incl. AC superposition).

- Cable 1AK 645 63 Coaxial cable of 50 Ω impedance.
- 1 m long, fitted with one BNC connector and two banana plugs of \emptyset 2.3 mm. Serves for connecting the output of the calibrator to the input of the vertical amplifier, or for interconnection of the oscilloscope with other instruments.
- Cable 1AK 641 63 Coaxial cable of 50 Ω impedance, \varnothing 5 mm, 1 m long, fitted with two BNC connectors. – Serves for interconnection of the oscilloscope with other instruments.
- Cable 1AK 641 94 Coaxial cable of 50 Ω impedance, 1 m long, fitted with one BNC connector and two banana plugs of \varnothing 4 mm. – Serves for interconnection of the oscilloscope with other instruments.
- Plug 1 AF 895 43 BNC connector of 50 Ω impedance Serves for preparing a special connecting cable.
- Feed-through load 1AK 058 69 Serves for connection to the inputs of the oscilloscope employed in measuring setups of 50 Ω impedance.

3. TECHNICAL DATA

3.1. Basic data

3.1.1. Cathode ray tube

Type: 11L01011 Screen: 80×95 mm Afterglow: Medium Anode voltage: 2,000 V Accelerating voltage: 14,000 V Deflection: Electrostatic, symmetrical in both directions Max. useful screen area: 48×80 mm

3.1.2. Kalibrátor
Zdroj obdélníkového napětí
Polarita: kladná vůči nule
Výstupní napětí: 0,04 Všš, 0,4 Všš, 4 Všš ±2 %
Opakovací kmitočet: 1 kHz ±2 %

Délka náběžné hrany: 330 ns Střída: 49–51 %

3.1.3. Horizontální zesilovač

Jako vstupní konektor slouží vstup kanálu B vertikálního zesilovače (po přepnutí do režimu XY).

Vstupní citlivost a impedance shodná s vertikálním zesilovačem.

Kmitočtový rozsah: 0 až 4 MHz (8 dílků) Max. vstupní signál: ±4× údaj vstupního děliče

3.1.4. Vertikální zesilovač

$\begin{array}{ll} \mbox{Kmitočtový rozsah: ss 0-120 MHz} & [-3 dB] \\ \mbox{st 10 Hz} & 120 MHz & [-3 dB] \\ \mbox{Prodloužení náběžné hrany impulsu: } \leq 2,9 \mbox{ ns} \end{array}$
Vychylovací činitel: cejchovaný ve stupních 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1; 2; 5 V/dílek přesnost ±5 % Překmit impulsu: 5 % cr/fcvor f 2004 v 400 Teplotní závislost poklesu kmitočtové charakteristiky na 120 MHz: max. ±0,1 dB/°C
Plynulá změna citlivosti: ≧ 1 : 2,5 Vstupní RC: 1 MΩ/asi 25 pF, nesymetrický vstup

Maximální vstupní napětí: při ss i st vazbě max. 130 V (U_{ss} + U_{st šp}); stř. složka 260 V_{šš} do 1 kHz

Druh činnosti: pouze kanál A; pouze kanál B; přepínání kanálů časovou základnou: přepínání 3.1.2. Калибратор

Источник прямоугольного напряжения Полярность: положительная относительно нуля Выходное напряжение: 0,04 В; 0,4 В; 4 В размах ±2 %

Частота повторения: 1 кГц ±2 % Длительность переднего фронта 330 нс Скважность: 49—51 %

3.1.3. Усилитель горизонтального отклонения

В качестве входного гнезда использован вход канала В усилителя вертикального отклонения (после переключения в режии ХҮ). Входная чувствительность и сопротивление

соответствуют усилителю вертикального отклонения.

Диапазон частот: 0—4 МГц (8 делений) Макс. входной сигнал: ±4 раз показание входного делителя

3.1.4. Усилитель вертикального отклонения

Диапазон частот: пост. 0-120 МГц —3 дБ) перем. 10 Гц — 120 МГц —3 дБ1 Увеличение длительности переднего фронта импульса: ≦ 2,9 нс Коэффициент отклонения: калиброванный по ступеням 0,01 - 0,02 - 0,05 - 0,1 - 0,2 -- 0,5 - 1 - 2 - 5 В/деление; точность ±5 % Выброс импульса: 5 % Температурная зависимость завала частотной характеристики на частоте 120 МГц: макс. ±0.1 дБ/°С Плавное изменение чувствительности: ≧ 1 : 2,5 Входные параметры RC: 1 МОм/прибл. 25 пФ. несимметричный вход Максимальное входное напряжение: при постоянной и переменной связи не более 130 В

(U_{пост.} + U_{пер.} размах); переменная составляющая 260 В размах до 1 кГц Режим работы: только канал А; только канал В;

коммутация каналов генератором развертки;

3.1.2. Calibrator

Source of rectangular voltage Polarity: Positive with regard to zero Output voltages: 0.04 V_{pp}, 0.4 V_{pp}, 4 V_{pp}

Repetition frequency: 1 kHz ±2 % Rise time: 330 ns Duty cycle: 49 % to 51 %

3.1.3. Horizontal amplifier

The input of channel B of the vertical amplifier serves as input connector (after switching over to the X-Y mode).

The input sensitivity and impedance are the same as those of the vertical amplifier.

Frequency range: 0 to 4 MHz (8 divisions) Max. input signal: $\pm 4 \times$ reading of the input divider

3.1.4. Vertical amplifier

Frequency ranges: DC: 0 to 120 MHz [-3 dB]AC: 10 Hz to 120 MHz [-3 dB]Rise time: ≤ 2.9 ns

Deflection coefficient: Calibrated in steps: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5 V/div. Accuracy ±5 % Pulse overshoot: 5 %

Temperature-dependence of the frequency response: Max. ±0.1 dB/°C at 120 MHz

Continuous sensitivity change: ≥ 1 : 2.5 Input RC: 1 m Ω , approx. 25 pF; asymmetrical input

Max. input voltage: max. 130 V at DC and AC coupling ($V_{DC} + V_{AC peak}$); AC component 260 V_{p-p} up to 1 kHz

Modes of operation: Only channel A; Only channel B; Channel switching by the time base; Channel

±2 %

kanálů kmitočtem asi 500 kHz; oba kanály A±B; XY; u kanálu B přepínání polarity \pm Odběr synchronizace: možnost synchronizace signálem z kanálu A, signálem z kanálu B, z koncového stupně A±B 3.1.5. Časová základna Rozsah rychlostí časové základny A: 0,5 s/díl až 0.05 µs/díl Rozsah rychlostí časové základny B: 50 ms až $0.05 \, \mu s/dil$ Chyba: max. ±5 % Odstupňování rychlostí: 1:2:5 Lupa: 10× Přídavná chyba: ±2 % ±10 ns při vynechání prvních a posledních 10 % délky stopy Způsoby provozu: pouze základna A; základna A přisvětlena základnou B; pouze zpožděná základna B; základna A střídavě se základnou B (přepínání základnou A) Synchronizace (základna je plně spouštěná) Způsoby provozu spouštění: int: ss 0-20 MHz < 1 dílek 0-100 MHz < 2 dilky0-120 MHz < 3 dílky ext: ss 0- 20 MHz < 0,1 Vef 0-100 MHz < 0,3 Vef 0-120 MHz < 0,5 Vef $1 M\Omega \pm 20 \%$ Rvst. < 30 pFCvst. dolní mezní kmitočet 20 Hz ST horní mezní kmitočet 100 kHz NF

VF dolní mezní kmitočet 100 kHz

коммутация каналов частотой прибл. 500 кГц; оба канала A±B; XY; переключение полярности канала B±

Режим синхронизации: Возможность синхронизации сигналом канала А; сигналом канала В; сигналом оконечного каскада А±В

3.1.5. Генератор развертки

Диапазон скоростей равзертки А: 0,5 с/деление --0,05 мкс/деление

Диапазон скоростей развертки В: 50 мс/деление — 0,05 мкс/деление

Погрешность: макс. ±5 %

Соотношения скоростей развертки: 1:2:5

Лупа: 10×

Дополнительная погрешность: ±2 % ±10 нс при исключении начального и конечного участка 10 % от размера осциллограммы по горизонтали

Режимы работы: только развертка А; развертка А с подсветкой развертки В; только задержанная развертка В; развертка А чередуется с разверткой В (коммутация сигналом генератора развертки А)

Синхронизация: (генератор развертки запускается)

Способы запуска:

внутр. пост.	
, ,	0-100 МГц < 2 деления
	0-120 МГц < 3 деления
внешн. пост.	0— 20 МГц < 0,1 В эфф.
0.1.0	0—100 МГц < 0,3 В эфф.
	0—120 МГц < 0,5 В эфф.
R _{ex.}	1 МОм ±20 %
C _{BX}	< 30 пФ
перем.	нижняя граничная частота
	20 Гц
НЧ	верхная граничная частота
	100 кГц
вч	нижняя граничная частота
	100 кГц

switching by approximately 500 kHz; Both channels A \pm B; X–Y operation; Channel B has facility for polarity switching (+ or -)

Synchronization: By a signal drawn from channel A: By a signal drawn from channel B; By a signal derived from the final stage A±B

3.1.5. Time bases

Speed range of time base A: 0.5 s/div. to 0.05 μ s/div.

Speed range of time base B: 50 ms/div. to 0.05 µs/div.

Error: Max. ±5 %

Speed steps: 1:2:5

Time magnification: 10×

Additional error: $\pm 2\% \pm 10$ ns

Excluding 10 % of the trace length at each end.

Modes of operation: Only sweep A; Sweep A with brightness modulation derived from sweep B; Only delayed sweep B; Sweeps A and B alternately (switched by time base A)

Synchronization: (data for full triggering)

Triggering modes:

$\begin{array}{llllllllllllllllllllllllllllllllllll$	ÎÑT. DC	0 to 20 MHz < 1 division 0 to 100 MHz < 2 divisions 0 to 120 MHz < 3 divisions
R_{in} 1 MΩ ±20 % C_{in} < 30 pF	EXT. DC	0 to 100 MHz < 0.3 V RMS
· ·	R _{in} C _{in} AC	1 MΩ ±20 % < 30 pF
RF Botom limit frequency 100 kHz	AF	Top limit frequency 100 kHz
	RF	Botom limit frequency 100 kHz

AUT dolní mezní kmitočet asi 100 Hz

Bez signálu samovolně odbíhá.

Základna B je přímo spouštěna ze základny A.

Obě základny jsou vybaveny pomocnými výstupy přisvětlovacího impulsu v TTL úrovních (N = 1).

3.1.6. Jasová modulace paprsku

Vstup Z Min. modulační napětí: 3 V_{šš} Max. modulační napětí: 10 V_{šš} Vstupní kapacita: asi 40 pF Vstupní odpor: asi 47 kΩ

3.2. Pracovní podmínky

Referenční teplota: $+23 \degree C \pm 2 \degree C$ Provozní teplota: $+5 \degree C - +40 \degree C$ Relativní vlhkost: 40–80 % Tlak vzduchu: 86 000 Pa - 106 000 Pa

Pracovní poloha přístroje: vodorovná nebo nakloněná

Napájení: ze střídavé sítě 220 V/120 V; 50-60 Hz

Druh napájecího proudu: střídavý sinusový se zkreslením menším než 5 % Příkon: asi 145 VA Jištění: 220 V – 630 mA/250 V T 120 V – 1,25 A/250 V T Vnější magnetické pole: zanedbatelné Vnější elektrické pole: zanedbatelné

3.3. Všeobecné údaje

Bezpečnostní třída: přístroj je proveden v bezpečnostní třídě l podle ČSN 35 6501 Osazení: 1 obrazovka, 16 integrovaných obvodů, 173 tranzistorů, 129 diod АВТ нижняя граничная частота прибл. 100 Гц Без сигнала работает в режиме автоколебаний. Генератор В прямо запускается сигналом гене-

ратора А.

Оба генератора развертки оснащены вспомогательными выходами импульса подсветки в уровнях ТТЛ (N = 1).

3.1.6. Модуляция луча по яркости

Вход Z

Мин. напряжение модуляции: 3 В размах Макс. напряжение модуляции: 10 В размах Входная емкость: прибл. 40 пФ Входное сопротивление: прибл. 47 кОм

3.2. Условия эксплуатации

Нормальная температура: +23 °C ±2 °C Рабочая температура: +5 °C - + 40 °C Относительная влажность воздуха: 40-80 % Давление воздуха: 86 000 Па - 106 000 Па

Рабочее положение прибора: горизонтальное или наклонное Питание: от сети переменного тока 220 В/120 В; 50-60 Гц Вид тока питания: переменный синусоидальный с КНИ менее 5 % Потребляемая мощность: прибл. 145 ВА Защита: 220 В — 630 мА/250 В Т; 120 В — 1,25 А/ /250 В Т Внешнее магнитное поле: пренебрежимо мало Внешнее электрическоке поле: пренебрежимо мало

3.3. Общие данные

Класс безопасности: прибор выполнен по классу безопасности 1 по предписаниям МЭК Рабочий комплект полупроводниковых и вакуумных приборов: электронно-лучевая трубка 1 шт.; интегральные микросхемы 16 шт.; транзисторы 173 шт.; диоды 129 шт. AUT. Bootom limit frequency approx. 100 Hz Without a signal, the time base runs freely.

Time base B is triggered directly by time base A.

Each of the two time bases has an auxiliary output of the pulse for trace brightness modulation in TTL levels (N = 1).

3.1.6. Brightness modulation

Z input for trace brightness modulation Min. modulating voltage: $3 V_{pp}$ Max. modulating voltage: $10 V_{pp}$ Input capacitance: Approx. 40 pFInput resistance: Approx. $47 \text{ k}\Omega$

3.2. Working conditions

Reference temperature: +23 °C ±2 °C Ambient temperature range: +5 °C to +40 °C Relative humidity range: 40 % to 80 % Atmospheric pressure range: 86 000 Pa to 106 000 Pa Working position of the oscilloscope: Horizontal, or tilted Powering: From AC mains of 220 V, or 120 V; 50 to 60 Hz Powering current: Sinusoidal AC, of distortion less than 5 % Power consumption: Approx. 145 VA Protection: By fuses: 630 mA/250 V T for 220 V, or 1.25 A/250 V T for 120 V External magnetic field: Negligible External electrid field: Negligible

3.3. General data

Intrinsic safety: Class I., according to the Czechoslovak Standard ČSN 35 6501, in conformity with the pertaining

IEC Recommendation (Publ. No. 348, 1971).

Complement: 1 Cathode ray tube, 16 Integrated circuits, 173 Transistors, 129 Diodes Rozměry přístroje (bez držadla): výška 165 mm, šířka 407 mm, hloubka 520 mm, hmotnost 20 kg Rozměry zabaleného přístroje: výška 410 mm, šířka 600 mm, hloubka 830 mm, hmotnost asi 32 kg

Габариты прибора (без ручки): высота 165 мм, ширина 407 мм, глубина 520 мм, масса 20 кг Габариты упакованного прибора: высота 410 мм, ширина 600 мм, глубина 830 мм, масса прибл. 32 KF

Dimensions and weights:

Instrument unpacked: Width 407 mm, Height 165 mm, Depth 520 mm, (Excluding the handle) Weight 20 ka

Instrument packed: Width 600 mm, Height 410 mm, Depth 830 mm, Weight 32 kg approx.

PRINCIP ČINNOSTI 4.

4.1. Blokové schéma (obr. 1) vertikálního zesilovače

- A Vstup A
- B Vstup B
- 1 Vstupní dělič
- 2 Emitorové sledovače
- 3 Vstupní zesilovač
- 4 Operační zesilovač
- 5 Dělič
- 6 Zesilovač
- 7 Zesilovač
- 8 Zesilovač
- 9 Budič zpoždovací linky + zpoždovací linka
- 10 Zesilovač
- 11 Zesilovač
- 12 Emitorové sledovače
- 13 Koncový zesilovač
- 14 Elektronicky přepínaný zesilovač synchronizace 15 – Elektronicky přepínaný zesilovač synchronizace
- 16 Synchronizační zesilovač
- 17 Komplementární sledovač
- 18 Emitorové sledovače
- 19 Spínací zesilovač
- 20 Hradlovací obvod
- 21 Tvarovací obvod + multivibrátor 1 MHz
- 22 Přepínací impuls časové základny
- 23 Zhášecí impuls
- 24 Synchronizační signál do časové základny
- 25 Výrovnání nuly
- 26 Plynulá změná citlivosti
- 27 Posuv

8

- Y1-Y2 Vertikální vychylovací destičky
- 28 Rozvážení vertikálního zesilovače při provozu
- "ALT." časové základny

4. ПРИНЦИП ДЕЙСТВИЯ

4.1. Блок-схема (рис. 1) усилителя вертикального отклонения

- Вход А
- Вход В
- 1 Входной делитель
- 2 Эмиттерные повторители
- 3 Входной усилитель
- 4 Операционный усилитель
- 5 Делитель
- 6 Усилитель
- Усилитель
- 8 Усилитель
- Возбудитель линии задержки + линия задержки 9
- 10 Усилитель
- 11 Усилитель
- 12 Эмиттерные повторители
- 13 Конечный усилитель
- 14 Переключаемый усилитель синхронизации
- 15 Переключаемый усилитель синхронизации
- 16 Усилитель синхронизации
- 17 Комплементарный повторитель
- 18 Эмиттерные повторители
- 19 Ключевые усилители
- 20 Стробирующая схема
- 21 Схема формирования + мультивибратор 1 МГц
- 22 Импульс переключения развертки
- 23 Гасящий импульс
- 24 Синхронизирующий сигнал в развертку
- 25 Компенсация нуля
- 26 Плавное изменение чувствительности
- 27 Смещение
- Y1-Y2 Вертикально отклоняющие пластины
- 28 Разбалансировка усилителя вертикального отклоне
 - ния в режиме работы «АЛТ.» генератора развертки

- PRINCIPLE OF OPERATION 4
- 4.1. The block diagram of the vertical amplifier is in Fig. 1
- A Input A
- Input B R
- 1 Input attenuator
- 2 Emitter followers
- 3 Input amplifier
- 4 Operational amplifier
- 5 Attenuator
- 6 Amplifier
- 7 Amplifier
- 8 Amplifier
- 9 Driver of the delay line + delay line
- 10 Amplifier
- 11 Amplifier
- 12 Emitter followers
- 13 Final amplifier
- 14 Trigger signal amplifier with switch
- 15 Trigger signal amplifier with switch
- 16 Synchronizing amplifier
- 17 Complementary follower
- 18 Emitter follower
- 19 Switching amplifier
- 20 Gating circuit

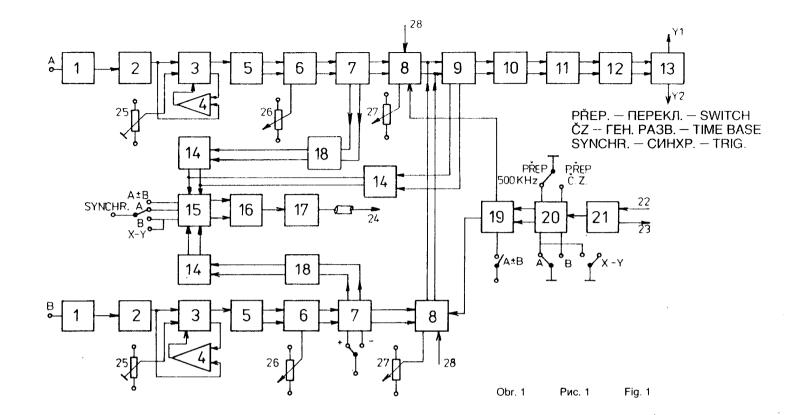
23 - Blanking pulse

25 - Zero balancing

27 - Shift

21 - Shaping circuit + multivibrator 1 MHz

28 - Unbalance of the vertical amplifier in alternate operation


22 - Switching pulse of the time base

24 - Trigger signal to the time base

26 - Continuous sensitivity control

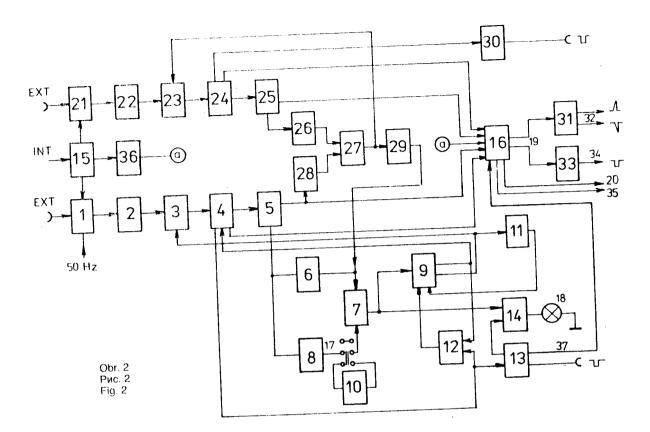
("ALT.") of the time bases

 Y_1, Y_2 – Vertical deflection plates

4.2. Blokové schéma časové základny

- 1, 21 Vstupní přepínač
- 2, 22 Synchronizační zesilovač
- 3, 23 Tvarovací stupeň
- 4 24 Řídicí zesilovač
- 5, 25 Integrator
- 6, 26 Zastavovací obvod
- 7, 27 Hradlovací obvod
 - 8 Obvod zádrže
 - 9 Elektronický přepínač
 - 10 Obvod pro jednorázové spouštění
 - 11 Časovací obvod automatiky
 - 12 Součinový obvod
 - 13 Zesilovač výstupních impulsů A
 - 14 Zesilovač pro indikační světlo
 - 15 Sledovač signálu

4.2. Блок-схема генератора развертки


- 1, 21 Входной переключатель
- 2 22 Усилитель синхронизации
- 3, 23 Каскад формирования
- 4, 24 Управляющий усилитель

1

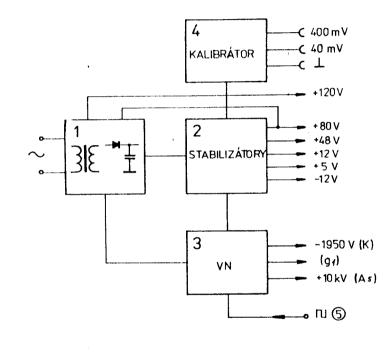
- 5, 25 Интегратор 6, 26 Схема остановки
- 7, 27 Стробирующая схема
 - 8 Схема задержки
 - 9 Электронный коммутатор
 - 10 Схема однократного запуска
 - 11 Управляющая схема автоматики
 - 12 Схема произведения
 - 13 Усилитель выходных импульсов А
 - 14 Усилитель для лампы индикации
 - 15 Повторитель сигнала

- 4.2. The block diagrams of the time bases
- 1, 21 Input switches
- 2, 22 Trigger amplifier
- 3, 23 Shaping stages
- 4, 24 Control amplifiers
 5, 25 Integrators
 6, 26 Stopping circuits
 7, 27 Gating circuits
 8 Hold off circuit

- 9 Electronic switch
- 10 Circuit for one-shot triggering
- 11 Timing circuit of the automatic control
- 12 AND circuit
- 13 Amplifier of output pulses A
- 14 Amplifier for the indicating lamp
- 15 Signal follower

- 16 Elektronický přepínač funkcí
- 17 Přepínač 1×
- 18 Indikační světlo
- 19 Výstupy do horizontálního a přisvětlovacího zesilovače
- 20 Výstup překlápěciho impulsu pro vertikální zesilovač
- 28 Zpožďovací obvod
- 29 Tvarovač zastavovacího impulsu
- 30 Zesilovač výstupních impulsů B
- 31 Horizontální zesilovač
- 32 Symetrický signál pro horizontální desky
- obrazovky
- 33 Zesilovač přisvětlovacího impulsu
- 34 Impuls pro řízení jasu obrazovky

- 16 Электронный коммутатор режимов работы
- 17 Переключатель 1×
- 18 Лампа индикации
- Выходы усилителей горизонтального
- 19 отклонения и подсветки
- Выход опрокидывающего импульса усилителя верти-20 кального отклонения
- 28 Схема задержки 29 — Схема формирования импульса остановки
- 30 Усилитель выходных импульсов В
- 31 Усилитель горизонтального отклонения
- 32 Симметричный сигнал для горизонтально отклоняющих пластин электронно-лучевой трубки
- 33 Усилитель импульса подсветки
- 34 Импульс управления яркостью электронно
 - лучевой трубки


- 16 Electronic function selector switch
- 17 Change-over switch 1×
- 18 Indicating lamp
- Outputs to the horizontal and brightness 19 modulating amplifiers
- Output of the alternating pulse for the vertical 20 amplifier
- 28 Delay circuit
- 29 Shaper of the stopping pulse
- 30 Amplifier of output pulses B
- 31 Horizontal amplifier
 32 Symmetrical signal for the horizontal deflection plates of the CRT
- 33 Amplifier of the pulse for trace brigthness modulation
- 34 Pulse for trace brigthness modulation

- 35 Výstup rozvažovacího impulsu pro vertikální zesilovač
- 36 Zesilovač pro provoz X–Y
 37 Přepínací impuls pro elektronický přepínač funkcí (16)
- 4.3. Blokové schéma zdrojů

- 35 Выход импульса разбалансировки вертикального усилителя
- 36 Усилитель для режима Х-Ү
- 37 Импульс переключения для электронного коммутатора (16)
- 35 Output of the unbalancing pulse for the vertical amplifier
- 36 Amplifier for X-Y operation
- 37 Switching pulse for the electronic switch (16)

4.3. Блок-схема источников питания

4.3. Block diagram of the power supplies

- 1 Transformátor a usměrňovače s filtry
- 2 Stabilizátory
- 3 Zdroj VN pro obrazovku
- 4 Kalibrátor napětí
- , 5 Přisvětlovací impuls "Z" zesilovače

- 1 Трансформатор и выпрямители с фильтрами
- 2 Стабилизаторы
- 3 Источник ВН для элетронно-лучевой трубки
- 4 Калибратор напряжения
- 5 Импульс подсветки усилителя Z

- 1 Transformer and rectifiers with filters
- 2 Stabilizers
- 3 High-voltage supply for the CRT
- 4 Voltage calibrator
- 5 Pulse for trace brightness modulation from the Z-amplifier

5. POKYNY PRO VYBALENÍ A PŘÍPRAVA PŘÍSTROJE K PROVOZU

5.1. Vybalení přístroje

Přístroj zabalený výrobcem umístěte tak, aby byl při vybalování v pracovní poloze. Vlastní přístroj je vsunut do obalu z polyetylénu. Na přístroji jsou umístěny sáčky s vysoušedlem.

Doporučujeme obal odstřihnout v místě svaření tak, aby v něm mohl být přístroj skladován (pokud není používán k měření) nebo přepravován.

5.2. Skladování

Přístroj skladujte pokud možno v místnosti se stálou pokojovou teplotou. Při déle trvajících přestávkách v používání přístroje vsuňte přístroj do sáčku z polyetylénu a uložte do krabice, ve které byl dopravován. Chraňte přístroj pokud možno před prudkými změnami teplot, vlhkem a agresivním prostředím.

5.3. Příprava měření

Před připojením přístroje na síť se přesvědčte, zda je přístroj připojen na správné siťové napětí udané na voliči. V případě, že na voliči je nesprávné napětí, přepojte volič do správné polohy. Přepojení se provádí po uvolnění zajišťovacího šroubu přepínacím kotoučkem, který vytáhněte a zasuňte tak, aby číslo udávající napětí bylo proti trojúhelníkové značce na zadním štítku.

5. УКАЗАНИЯ ПО РАСПАКОВКЕ И ПОДГОТОВКЕ ПРИБОРА К ЭКСПЛУАТАЦИИ

5.1. Распаковка прибора

Прибор, упакованный на заводе-изготовителе, установить так, чтобы он во время распаковки находился в рабочем положении. Собственно прибор установлен в обвертке из полиэтилена. На приборе расположены пакетики с дегидратором.

Рекомендуется разрезать обвертку в месте сварки так, чтобы в ней можно было прибор хранить или транспортировать (если он не используется для измерения).

5.2. Хранение

Прибор хранить, по возможности, в помещении с постоянной комнатной температурой. При более длительных перерывах в эксплуатации установить прибор в обвертку из полиэтилена и в коробку, в которой он был поставлен. Прибор следует защищать от резких изменений температуры, влаги и агрессивной среды.

5.3. Подтотовка измерений

Перед подключением прибора к сети необходимо убедиться в том, что он переключен на правильное напряжение сети, указанное на переключателе. В том случае, если на переключателе имеется неправильное напряжение сети, то переключатель следует перевести в правильное положение. Переключение осуществляется после ослабления фиксирующего винта с помощью диска переключения, чтобы число, определяющее напряжение сети, находилось по оси треугольной метки на задней панели.

5. INSTRUCTIONS FOR UNPACKING AND PREPARATION FOR USE

5.1. Unpacking the instrument

The oscilloscope in its original packing has to be placed so that, after being unpacked, it is in its working position. The instrument proper is in a polyethylene cover which is hermetically sealed. Several fabric bags containing a desiccant are attached to the instrument.

It is recommended to cut the polyethylene cover close to where it is sealed, so that it can be used either for storing the instrument (when not being used for a measurement), or for possible transport at a later date.

5.2. Storage

The oscilloscope must be stored in a room where the temperature is constant, as far as possible. In the case of lengthy intervals between applications, the oscilloscope has to be placed in its polyethylene cover and put in the original box in which it arrived from the makers.

The instrument must be protected against sudden temperature changes, dampness and aggressive fumes (further details are given in Section 11. of this Manual).

5.3. Preparations for a measurement

Before connecting the oscilloscope to the AC mains, it is necessary to make sure that it is switched to the available mains voltage by means of its mains voltage selector. If this selector indicates an incorrect voltage, then it has to be reset to the correct position, as follows: After releasing the retaining screw of the switching disc, the latter has to be pulled out partially and turned so that the number indicating the available mains voltage is opposite to the triangular mark on the back panel; then the disc has to be pushed home and secured with the retaining screw.

Zajišťovací šroub znovu zašroubujte. Přístroj je od výrobce nastaven na napětí 220 V. Při připojení na 120 V je třeba vyměnit též síťovou pojistku. Hodnoty polistek pro obě napálecí sítě jsou uvedeny v kapitole 3 – "Technické údaje".

5.4. Umístění přístroje

Pro správnou funkci je nutné, zejména při zvýšené okolní teplotě, umístit přístroj tak, aby byl dostatečně větrán. Z toho důvodu je nutno dbát, aby větrací otvory byly přístupné proudu vzduchu. Současně je nutno dbát, aby chladicí žebra s výkonovými tranzistory. umístěná na zadní straně přístroje, nebyla zakryta.

Nedodržení těchto zásad může mít za následek přehřátí přístroje, tím může dojít ke zhoršení vlastností, eventuálně k poškození.

Poznámka:

Pokud by při vybalování přístroje bylo zjištěno podstatné poškození obalu, zkontrolujte před uvedením do provozu, zda nebyl poškozen i přístroj.

NÁVOD K OBSLUZE A POUŽÍVÁNÍ 6.

6.1. Pohled na přední panel přístroje

F1	Vstupní konektor kanálu A
F101	Vstupní konektor kanálu B
S1.1	Přepínač ss a st vazby kanálu A
S1.2	Přepínač nulování kanálu A
S2	Přepínač vychylovacího činitele kanálu A

Фиксирующий винт снова завинтить. Прибор на заводе-изготовителе установлен на напряжение 220 В. При переключении на 120 В необходимо также заменить сетевой предохранитель. Значения предохранителей для обоих напряжений сети приведены в главе 3 «Технические данные».

Each newly delivered instrument has been set by the makers for 220 V powering. If it has to be switched over for 120 V powering, then also the mains fuse has to be exchanged. The correct fuse ratings are given in Section 3 - "Technical Data".

5.4. Расположение прибора

Для правильной работы, особенно, при повышенной температуре окружающего воздуха необходимо располагать прибор так. чтобы обеспечивалась достаточная вентиляция. Поэтому необходимо обеспечить доступ потока воздуха к вентиляционным отверстиям. Одновременно следует следить за тем, чтобы радиаторы мощных транзисторов, расположенные на задней стенке прибора, не были закрыты.

Несоблюдение этих правил может привести к перегреву прибора, ухудшению его параметров или даже к выходу из строя.

Примечание:

Если при распаковке прибора обнаружено существенное повреждение тары, то перед пуском прибора в ход следует убедиться в том, что не поврежден сам прибор.

5.4. Positioning the oscilloscope

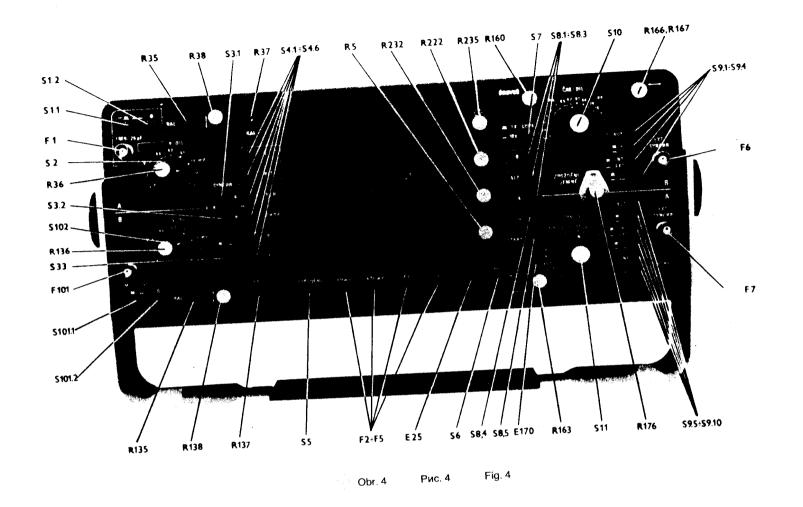
In order to ensure correct operation of the oscilloscope, especially at higher ambient temperatures, it is essential to position it so that it is cooled adequately by natural air circulation. For this reason, the cooling vents must not be obstructed in any way and also the heat sinks of the power transistors, which are mounted on the back of the instrument, must not be covered up.

If these conditions are not met, the instrument could become overheated, resulting in worsened properties and even damage to it.

Note:

If, when unpacking the oscilloscope, it is found that the packing has been damaged badly, then before setting the instrument in operation, it is necessary to make sure that it has not incurred any damage itself.

6. ИНСТРУКЦИЯ ПО ОБСЛУЖИВАНИЮ И ЭКСПЛУАТАЦИИ


- 6.1. Вид передней панели прибора
- F1 Входное гнездо канала А F101 Входное гнездо канала В S1.1 Переключатель связи по пост. и перем. току канала А S1.2 Переключатель установки нуля канала А S2 Переключатель коэффициента отклонения канала А

INSTRUCTIONS FOR USE AND ATTENDANCE 6.

6.1. Front panel of the oscilloscope

The main controls of the oscilloscope are concentrated on its front panel (Fig. 4) and are as follows:

F1	Input connector of channel A
F101	Input connector of channel B
S1.1	Change-over switch for setting DC or AC coupling of channel A
S1.2	Zeroizing switch of channel A
S2	Selector of the deflection coefficient of channel A

Přepínač ss a st vazby kanálu B Přepínač nulování kanálu B Přepínač vychylovacího činitele kanálu B Přepínač polarity kanálu B Přepínač volby synchronizace A (A±B) Přepínač volby synchronizace B (A±B)	S101.1 S101.2 S102 S3.3 S3.1 S3.2	Переключатель связи по пост. и перемен. току канала В Переключатель нуля канала В Переключатель коэффициента отклонения канала В Переключатель полярности канала В Переключатель выбора синхронизации А (A±B) Переключатель выбора синхронизации В (A±B)	S101.2	Change-over switch for setting DC or AC coupling of channel B Zeroizing switch of channel B Selector of the deflection coefficient of channel B Polarity selector switch of channel B Synchronization selector A ($A\pm B$) Synhronization selector B ($A\pm B$)
---	--	---	--------	--

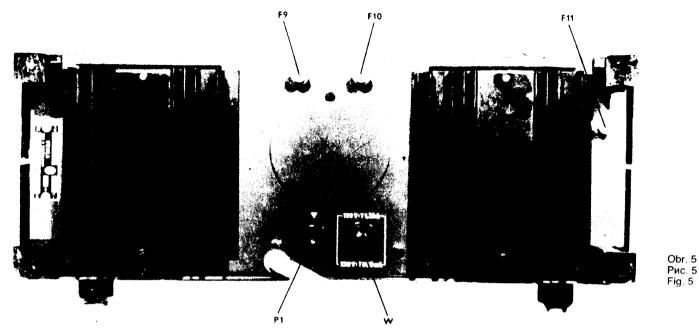
S101.1

S101.2 S102

S3.3 S3.1

S3.2

S4.1	Přepínač funkcí – kanál A	S4.1
S4.2	Přepínač funkcí — přepínáno časovou základnou	S4.2
S4.3	Přepínač funkcí součtový provoz A±B	S4.3
S4.4	Přepínač funkcí – přepínáno kmitočtem 500 kHz	S4.4
S4.5 S4.6	Přepínač funkcí – kanál B X–Y	S4.5 S4.6
R35	Potenciometr ss vyrovnání vstupního předzesilovače v kanálu A	R35
R36	Potenciometr plynulé změny vychylovacího činitele kanálu A	R36
R38	Potenciometr vertikálního posuvu kanálu A	R38
R135	Potenciometr ss vyrovnání vstupního předzesilovače v kanálu B	R135
R136	Potenciometr plynulé změny vychylovacího činitele kanálu B	R136
R138	Potenciometr vertikálního posuvu kanálu B	R138
R37	Potenciometr pro dostavení kalibrovaného vychylovacího činitele A	R37
R137	Potenciometr pro dostavení kalibrovaného vychylovacího činitele B	R137
R5	Potenciometr pro nastavení jasu žárovek prosvětlujících rastr před obrazovkou	R5
R222-R232	Regulace ostrosti stopy na stinitku	R222-
R235	Regulace jasu stopy na obrazovce	R235
S5	Tlačitko pro středění stopy	S5
S6	Síťový vypínač; ve stlačené poloze je přístroj zapnut	S6
F2F5	Výstupní zdířky kalibračního napětí	F2-F5
E25	Kontrolní světlo oznamující zapnutí přístroje	E25
E170	Svítící dioda oz∩amující připravenost základny	E170
S7	Tlačítko .,LUPA" 10×	S7
F7	Vstup externího synchronizačního signálu pro základnu A	F7


S4.1	Переключатель режимов работы — канал А	S4.1
S4.2	Переключатель режимов работы — коммутация сигналом развертки	S4.2
S4.3	Переключатель режима работы — режим сложения А±В	S4.3
S4.4	Переключатель режима работы — коммутация частотой 500 кГц	S4.4
S4.5 S4.6	Переключатель режима работы — канал В Х—Ү	S4.5 S4.6
R35	Потенциометр установки по пост. току входного предварительного усилителя канал А	R35
R36	Потенциометр плавного изменения коэффициента отклонения канала А	R36
R38	Потенциометр смещения по вертикали канала А	R38
R135	Потенциометр установки по пост. току входного предварительного усилителя канала В	R135
R136	Потенциометр плавного изменения коэффициента отклонения канала В	R136
R138	Потенциометр смещения по вертикали канала В	R138
R37	Потенциометр для установки калиброван- ного коэффициента токлонения А	R37
R137	Потенциометр для установки калиброван- ного коэффициента отклонения В	R137
R5	Потенциометр установки яркости ламп накаливания, освещающих растр перед электронно-лучевой трубкой	R5
R222-R232	Потенциометр резкости пятна на экране	R222-R2
R235	Регулировка яркости пятна на электронно- -лучевой трубке	R235
S5	Кнопка для центровки пятна	S5
S6	Сетевой выключатель — в нажатом состоянии прибор включен	S6
F2F5	Выходные зажимы напряжения калибровки	F2F5
E25	Контролная лампочка, сигнализирующая включение прибора	E25
E170	Светодиод, сигнализирующий готовность генератора развертки	E170
S7	Кнопка «ЛУПА» 10×	S7
F7	Вход внешнего сигнала синхронизации генератора развертки А	F7

1	Function selector channel A
2	Selector for channel switching by the time base
3	Selector for common A $\pm B$ operation
4	Selector for channel switching by the frequency 500 kHz
5 6	Function selector — channel B X-Y operation
5	Potentiometer for DC balancing of the input preamplifier of channel A
3	Potentiometer for continuous setting of the deflection coefficient of channel A
3	Potentiometer for vertical shift – channel A
35	Potentiometer for DC balancing of the input preamplifier of channel B
36	Potentiometer for continuous setting of the deflection coefficient of channel B
38	Potentiometer for vertical shift - channel B
,	Potentiometer for readjusting the calibrated deflection coefficient (A)
37	Potentiometer for readjusting the calibrated deflection coefficient (B)
	Potentiometer for brightness setting of lamps, illumating the raster in front of the CR tube
2-R232	Control of trace sharpness on the screen
35	Control of trace brightness on the CR tube
	Push-button for trace centring
	Mains switch. In depressed position the instrument is switched on
-F5	Output sockets of calibrating voltage
i	Pilot lamp signalling switching on of the instrument
0	LED indicating time base readiness
,	Push-button "MAG." for setting 10× time magnification
	Input for the external synchronizing signal for time base A

R166, R167	Potenciometry pro ovládání horizontálního posuvu	R166, R16
F6	Vstup externího synchronizačního signalu pro základnu B	F6
R163	pro zakladno b Potenciometr pro nastavení úrovně spouštění (A)	R163
R176	Potenciometr pro nastavení jemného zpoždění	R176
R160	Potenciometr pro nastavení úrovně spouštění (B)	R160
S11	Přepínač pro nastavení rychlosti základny A	S11
S8.5	Tlačítko pro jednorázové spouštění	S8.5
S8.1-S8.3	Přepínač funkcí časových základen	S8.1-S8.
S8.4	Tlačitko pro volbu jednorázového provozu	S8.4
S9.9S9.10	Tlačitka frekvenčního pásma synchronizace a volba synchronizace 50 Hz základny A	S9.9S9.
S9.6	Tlačítko polarity synchronizace základny A	S9.6
S9.7	Tlačítko zdrojů synchronizace základny A	S9.7
S10	Přepínač pro nastavení rychlosti základny B	S10
S9.2	Tlačítko polarity synchronizace základny B	S9.2
S9.3	Tlačítko zdrojů synchronizace základny B	S9.3
S9.5	Zapinání automatiky základny A	S9.5
S9.8	Tlačítko stejnosměrné a střídavé vazby synchronizace základny A	S9.8
S9.1	Zapínáni automatiky základny B	S9.1
S9.4	Tlačítko stejnosměrné a střídavé vazby synchronizace základny B	S9.4

167	Потенциометры управления смещением	R166, R167	Potentiometers for horizontal shift control
	по горизонтали Вход внешнего синхронизирующего сигнала	F6	Input for the external synchronizing signal for time base B
	генератора развертки В Потенциометр установки уровня запуска	R163	Potentiometer for triggering level setting (A)
	(A) Потенциометр установки задержки точно	R176	Potentiometer for fine delay setting
	Потенциометр установки уровня запуска	R160	Potentiometer for triggering level setting (B)
	(В) Переключатель установки скорости	S11	Speed selector of time base A
	развертки А Кнопка однократного запуска	S8.5	Push-button for one-shot triggering
58.3	Переключатель режима работы	S8.1-S8.3	Push-button set for selecting the operation modes of time bases
	генераторов развертки Кнопка установки однократного запуска	S8.4	Push-button for normal or one-shot operation setting
S9.10	Кнопки полосы частот синхронизации и выбор синхронизации 50 Гц	S9.9-S9.10	Push-buttons for selecting the synchronizing frequency band and for 50 Hz synchroniza- tion of time base A
	генератора развертки А Кнопка полярности синхронизации	S9.6	Push-button for setting the synchronizing polarity of time base A
	развертки А Кнопка источников синхронизации	S9.7	Push-button for selecting the synchronizing source for time base A
	развертки А Переключатель установки скорости	S10	Speed selector of time base B
	развертки В Кнопка полярности синхронизации	S9.2	Push-button for setting the synchronizing polarity of time base B
	генератора развертки В Кнопка источников синхронизации	S9.3	Push-button for selecting the synchronizing source of time base B
	генератора развертки В Включение автоматики генератора	S9.5	Switch of the automatic circuitry of time base A
	развертки А Кнопка связи по постоянному и перемен- ному токам генератора развертки А	S9.8	Push-button for selecting DC or AC synchronization coupling of time base A
	Включение автоматики генератора	S9.1	Switch of the automatic circuitry of time base B
	развертки В Кнопка связи по постоянному и перемен- ному токам синхронизации генератора развертки В	S9.4	Push-button for selecting DC or AC synchronization coupling of time base B

6.2. Вид задней панели прибора

- F9 Výstup obdélníkového průběhu základny A
- F10 Výstup obdélníkového průběhu základny B
- F11 Vstup pro vnější ovládání jasu obrazovky
- P1 Pojistka
- W Napěťový volič

6.3. Popis činnosti jednotlivých prvků

S4.1 až S4.6 – Přepínač funkcí vertikálního zesilovače.

"A" – Stisknuto tlačítko S4.1 – na stínítku pouze jedna stopa a zobrazován signál přivedený na vstupní konektor F1 kanálu A.

- F9 Выход прямоугольного сигнала генератора развертки А
- F10 Выход прямоугольного сигнала генератора развертки В
- F11 Вход внешнего управления яркостью электронно-лучевой трубки
- Р1 Предохранитель
- W Переключатель напряжения

6.3. Описание назначения отдельных элементов

S4.1—S4.6 — переключатель режимов усилителя вертикального отклонения

> «А» — нажата кнопка S4.1, на экране только одна осциллограмма, причем изображается сигнал, подаваемый на входное гнездо F1 канала A.

- F9 Output of the square-wawe voltage waveform of time base A
- F10 Output of the square-wawe voltage waveform of time base B
- F11 Input for external brightness modulation of the trace on the CRT screen
- P1 Fuse
- W Mains voltage selector

6.3. Descriptions of the functions of the individual controls

Front panel

S4.1 to S4.6 — Function selector push-button set of the vertical amplifier

"A" — When push-button S4.1 is depressed, only one trace appears on the CRT screen and only the signal applied to input connector F1 of channel A is displayed. "ALT." – Stisknuto tlačítko S4.2 – na stínítku jsou dvě stopy, přičemž při jednom odběhu časové základny je zobrazován signál přivedený na vstupní konektor kanálu A, při dalším odběhu časové základny je zobrazován signál přivedený na vstupní konektor kanálu B.

 $A\pm B^{\prime\prime}$ — Diferenciální provoz — stisknuto tlačítko S4.3 — na stínítku se zobrazuje buďto součet nebo rozdíl signálů přivedených na vstupy kanálů A a B. Volba součtu nebo rozdílu se provádí tlačítkem polarity kanálu B (S3.3).

"CHOPPED" – Stisknuto tlačítko S4.4 – na stínítku se zobrazují v rytmu kmitočtu 500 kHz signály na vstupu kanálu A a B.

"B" – Stisknuto tlačítko S4.5 – na stínítku je pouze jedna stopa a zobrazován signál přivedený na vstup F101 kanálu B.

"X-Y" – Stisknuto tlačítko S4.6 – zobrazuje
 X-Y. Signál kanálu A se zobrazuje vertikálně
 (Y), signál kanálu B se zobrazuje horizontálně
 (X).

"F1" – Vstupní konektor – konektor BNC určený k připojení měřených signálů ke kanálu A.

"F101" – Vstupní konektor – konektor BNC určený k připojení měřených signálů ke kanálu B.

S1.1 – Přepínač ss a st vazby kanálu A.

S101.1 – Přepínač ss a st vazby kanálu B – umožňuje volbu vazby měřeného signálu. V nestlačené poloze je vazba stejnosměrná, při stisknu«АЛТ.» — нажата кнопка S4.2 — на экране имеются две осциллограммы, причем при одном прямом ходе развертки изображается сигнал, подаваемый на входное гнездо канала A и при следующем прямом ходе развертки изображается сигнал, подаваемый на входное гнездо канала B. «A±B» — дифференциальный режим работы — нажата кнопка S4.3 — на экране изображается сумма или разность сигналов, подаваемых на входы каналов A и B. Установка суммы или разности осуществляется с помощью кнопки полярности канала B (S3.3).

канала в (53.3). Коммутация — нажата кнопка S4.4 — на экране изображаются сигнали, подаваемые на входы каналов А и В, переключаемые с частотой 500 кГц.

«В» — нажата кнопка S4.5 — на экране имеется только одна осциллограмма и изображается сигнал, подаваемый на вход F101 канала B.

вход F101 канала Б. «Х-Y» — нажата кнопка S4.6 — изображается сигнал в режиме Х-Y. Сигнал канала А изображается по вертикали (Y). Сигнал канала В изображается по горизонатали (X).

- F1 -- входное гнездо -- гнездо BNC, предназначенное для подключения измеряемых сигналов к каналу А.
- F101 входное гнездо гнездо BNC, предназначенное для подключения измеряемых сигналов к каналу B.
- S1.1 переключатель связи по пост. и перем. токам канала А.
- S101.1 Переключатель связи по пост. и перем. токам канала В — дает возможность установки вида связи измеряемого сигнала. В ненажатом положении имеет место связи по постоянному току.

"ALT." — When push-button S4.2 is depreseed, two traces appear on the CRT screen; at one sweep of the time base, the signal applied to the input connector of channel A is displayed, and at the other sweep of the time base, the signal applied to the input connector of channel B is displayed.

"A \pm B" — Differential operation. — When pushbutton S4.3 is depressed, either the sum of, or the difference between the signals applied to the inputs of channels A and B is displayed. The polarity switch (S3.3) of channels B serves for the selection of this sum or diffe-

rence. "CHOPPED" — When push-button S4.4 is depressed, the signals applied to the inputs of channels A and B and switched alternately in the rhythm of a frequency of 500 kHz, are displayed on the CRT screen.

alsplayed on the Critic Science, "B" — When push-button S4.5 is depressed, only one trace apprears on the CRT screen and only the signal applied to input connector F101 of channel B is displayed.

F101 of channel B is displayed. "X-Y" — When push-button S4.6 is depressed, the "X-Y" mode is operative. The signal of channel A is displayed vertically (Y). The signal of channel B is displayed horizontally (X).

"F1" — BNC input connector. — Serves for applying the measured signals to channel A.

F101 — BNC input connector. — Serves for applying the measured signals to channel B.

S1.1 – Change-over switch for DC or AC coupling of channel A.

S101.1 — Change-over switch for DC or AC coupling of channel B. — Enables the selection of the coupling of the measured signal. When not depressed, the coupling is DC; when deprestí tlačítka je měřený signál navázán střídavě přes kondenzátor 22 000 pF.

- S1.2 Α S101.2 – Nulovací tlačítko kanálu В Slouží k pořízení referenční hladiny vertikálního zobrazení.
- S2 Α S102 - přepínač vychylovacího činitele В

U každého kanálu umožňuje nastavit jednu z devíti hodnot kalibrovaného činitele vertikálního zobrazení.

- R36
- Α R136 – Plynulá změna vychylovacího činitele В

Potenciometry souose umístěné s přepínači vychylovacího činitele umožňují u každého kanálu snížit vychylovací činitel v rozsahu asi 1:2,5.

Kalibrovaný vychylovací činitel je zaručován v pravé krajní poloze těchto potenciometrů.

- R37
- Α R137 – Kalibrace citlivosti В Potenciometry určené k dostavení kalibrované hodnoty vychylovacího činitele každého kanálu.
- R35

R135 – Vyrovnání nuly B Potenciometry umožňují ss vyvážení nesymetrického výstupu vstupních zesilovačů a zamezují tak posuvu stopy při přepínání vychylovacího činitele.

R38

R138 – Potenciometry umožňující vertikální posuv stopy na stínítku u každého kanálu.

При нажатой кнопке имеет место связи сигнала через конденсатор 22 000 пФ.

- S1.2 А S101.2 - Кнопка установки нуля канала В Служит для образования опорного уровня вертикального изображения.
- S2

S102 — Переключатель коэффициента А отклонения В Дает возможность установки одного из девяти калиброванных значений коэффициента отклонения по вертикали каждого канала.

R36

R136 — Плавное изменение Α коэффициента отклонения канала В Потенциометры, установленные соосно с переключателями коэффициента отклонения дают возможность уменьшить коэффициент отклонения каждого канала в отношении прибл. 1: 2,5. Калиброванное значение коэффициента отклонения обеспечивается в правом крайнем положении потенциометров.

R37

А R137 — Калибровка чувствительности В Потенциометры, предназначенные для установки калиброванного значения коэффициента отклонения каждого канала.

R35

Α

R135 — Коррекция нуля B Потенциометры, предназначенные для балансировки по постоянному току несимметричного выхода входных усилителей с целью исключения смешения линии осциллограммы при переключении коэффициента отклонения.

Α

R38, R138 — Потенциометры вертикального смещения осциллограммы на экране отдельных каналов.

sed, the measured signal is AC-coupled via a 22 000 pF capacitor.

- S1.2, S101.2 Push-buttons for zeroizing channels A and B respectively. - Each serves for establishing the pertaining reference level of vertical display.
- S2, S102 Selectors of the deflection coefficients of channels A and B respectively. - One of the nine available values of the calibrated coefficient of vertical display can be selected for either channel.
- R36, R136 Potentiometers for continuous setting of the deflection coefficients of channels A and B respectively. - Potentiometers mounted coaxially with the appropriate deflection coefficient selectors. Each potentiometer serves for reducing the deflection coefficient of the pertaining channel within the range of approximatelv 1 : 2.5.

The calibrated deflection coefficient applies when the potentiometers are set to their extreme clockwise positions.

- R37, R137 Potentiometers for calibrating the sensitivity of channels A and B respectively. -Serve for adjusting the calibrated value of the deflection coefficient of each of the two channels.
- R35, R135 Potentiometers for zero balancing of channels A and B respectively. - Serve for DC balancing of the asymmetrical outputs of the input amplifiers in order to prevent trace drifting when the deflection coefficients are being altered.
- R38, R138 Potentiometers for shifting the traces of channels A and B respectively vertically on the CRT screen.

S3.1

- S3.2 Přepínač volby synchronizace.
- Přepínač umožňující odběr synchronizačního signálu z kanálu A (stisknuto tlačítko S3.1), z kanálu B (stisknuto tlačítko S3.2) nebo z koncové části zesilovače A±B (stisknuta obě tlačítka S3.1, S3.2).
- S3.2 "B" slouží k volbě polarity zobrazení signálu kanálu B. V nestlačené poloze je normální zobrazení "+", ve stlačené inverzní "–".
- S8.1–3 Přepínač funkcí časových základen

Poloha A — je-li přepínač S10 v poloze VYP., je stopa na stinitku obrazovky horizontálně vychylována časovou základnou A. Po přepnutí S10 do jiné polohy je na stopě (vychylované stále časovou základnou A) vyznačena úsečkou se zvýšeným jasem poloha a délka zpožděná časové základny B.

Poloha ALT – stopa je horizontálně vychylována střídavě základnou A a B. Při základně B je stopa vertikálně odchýlena nahoru. Při tomto provozu musí být rychlost základny B větší než rychlost základny A.

Poloha B – stopa je horizontálně vychylována zpožděnou základnou B.

- S11 ČAS/díl přepínač pro kalibrované nastavení rvchlosti základny A.
- S9.6 +/- základna A startuje podle nastavení "+" nebo "-" tak, že začátek odběhu je spouštěn buď vzestupnou (+) nebo se-

S3.1, S3.2 - Переключатель выбора синхронизации

Переключатель дает возможность снимать синхронизирующий сигнал канала А (нажата кнопка S3.1), канала В (нажата кнопка S3.2) или оконечной части усилителя A±B (нажаты обе кнопки S3.1, S3.2).

- S3.3 «В» служит для выбора полярности изображения сигнала канала В. В ненажатом положении имеет место нормальное изображение «+», при нажатом положении инвертированное изображение «--».
- S8.1-3 Переключатель режима работы генераторов развертки

Положение А — при переключении переключателя S10 в положение ВЫКЛ. развертка пятна на экране по горизонтали осуществляется сигналом генератора развертки А. После переключения S10 в другое положение на линии (отклонение все еще осуществляется сигналом генератора развертки А) отрезком с повышенной яркостью отмечено положение и длительность прямого хода задержанного генератора развертки В.

Положение АЛТ. — пятно отклоняется по горизонтали попеременно генераторами разверток А и В. При работе развертки В пятно сдвинуто по вертикали вверх. При этом режиме работы скорость развертки генератора В должна быть больше скорости развертки генератора А.

Положение В — пятно отклоняется по горизонтали сигналом задержанного генератора развертки В.

- S11 ВРЕМЯ/деление переключатель калиброванной установки скорости развертки А
- S9.6 +/- генератор развертки А запускается в зависимости от установки «+» или «--» так, что начало прямого хода синхронизировано восходящим (+) или нис-

- S3.1, S3.2 -- Synchronization selectors. -These selectors serve for drawing the synchronizing signal either from channel A (with the push-button S3.1 depresed). or from channel B (with the push-button S3.2 depressed), or from the final part of the amplifier, i.e. A±B (both push-buttons - S3.1 and S3.2 - depressed).
- S3.3 "B" Serves for selecting the polarity of the displayed signal of channel B. When not depresed, the display is normal, i.e. "+", when depressed, it is opposite, i.e. "-".
- S8.1 to S8.3 Push-button set for selecting the operation modes of the time bases.

Setting "A" – With selector S10 set to "OFF", the trace on the CRT screen is deflected horizontally by time base A. After switching selector S10 to any other position (deflection by time base A remains unaffected), the position and length of the delayed time base B are indicated by a line of increased brigthness.

Setting "ALT." — The trace is deflected horizontally by the time bases A and B alternately. The trace swept by time base B is deflected upwards. In this mode of operation, the speec of time base B must be higher than that of time base A.

Setting "B" — The trace is deflected horizontal ly by the delayed time base B.

- S11 "TIME/DIV." Calibrated selector of the speed of time base A.
- S9.6 "+/-" The time base A operates accordinto the setting "+" or "--" of this push-butto control, being triggered either by the risin

stupnou (--) částí synchronizačního signálu.

 S9.7 – INT/EXT – přepínač umožňuje volit zdroj synchronizačního signálu pro základnu A.
 INT – signál je přiváděn z vertikálního zesilovače, je tvarově shodný s průběhem pozorovaným na obrazovce.

EXT – signál musí být přiváděn z vnějšího zdroje na konektor F2.

S9.8 - SS/ST

SS – synchronizační obvody jsou stejnosměrně spojeny se zdrojem synchronizačního signálu. Přenáší se celé pásmo včetně stejnosměrné složky až do mezního kmitočtu.

ST – synchronizační obvody jsou se zdrojem synchronizačního signálu spojeny přes vazební kapacitu. Přenáší se celé pásmo bez stejnosměrné složky a kmitočtů nižších než 20 Hz.

S9.9+S9.10 – NF – synchronizační obvody jsou se zdrojem synchronizačního signálu spojeny přes integrační RC člen. Přenáší se pásmo včetně stejnosměrné složky do 100 kHz. Vyšší kmitočty jsou potlačeny.

> VF – synchronizační obvody jsou se zdrojem synchronizačního signálu spojeny přes derivační RC člen. Přenáší se pásmo bez stejnosměrné složky od 100 kHz do mezního kmitočtu.

> 50 Hz — jako synchronizační signál je vnitřní cestou přiváděn sinusový průběh 50 Hz odvozený od síťového kmitočtu.

ходящим (---) фронтом синхронизирующего сигнала.

 S9.7 — ВНУТР./ВНЕШ. — переключатель дает возможность выбрать источник сигнала сингронизации для развертки А.
 ВНУТР. — сигнал снимается с усилителя вертикального отклонения и его форма соответствует форме сигнала, наблюдаемого на экране.
 ВНЕШ. — сигнал должен подаваться от

внеш. — сигнал должен подаваться от внешнего источника на гнездо F2.

S9.8 — ПОСТ./ПЕРЕМ.

ПОСТ. — цепи синхронизации имеют связь по постоянному току с источником сигнала синхронизации. Передается весь диапазон частот, включая постоянную составляющую и кончая верхней граничной частотой.

ПЕРЕМ. — цепи синхронизации соединены с источником синхронизирующего сигнала через емкость связи. Передается весь диапазон частот за исключением постоянной составляющей и частот менее 20 Гц.

S9.9+S9.10 — НЧ — цепи синхронизации соединены с источником синхронизирующего сигнала через интегрирующую цепочку RC. Передается диапазон частот от постоянной составляющей до 100 кГц. Более высокие частоты подавляются.

> ВЧ — цепи синхронизации соединены с источником синхронизирующего сигнала через дифференцирующую цепочку RC. Передается полоса частот без постоянной составляющей, начиная со 100 кГц и кончя граничной частотой.

> 50 Гц — в качестве синхронизирующего сигнала во внутренней цепи подается на вход синхронизации синусоидальный сигнал 50 Гц, производный от напряжения сети.

edge (+) or the trailing edge (-) of the synchronizing signal.

S9.7 – "INT./EXT." – Change-over switch for selecting the source of the synchronizing signal for time base A.

"INT." — The signal is drawn from the vertical amplifier; its waveform is the same as that observed on the CRT screen.

"EXT." — the synchronizing signal derived from an external supply must be applied to connector F2.

S9.8 – "DC; AC" – Push-button change-over switch for coupling selection.

"DC" — The synchronizing circuits are DCcoupled to the source of the synchronizing signal. The whole band up to the limit frequency, including the DC component, is passed.

"AC" — The synchronizing circuits are ACcoupled to the source of the synchronizing signal via a coupling capacitor. The whole band, without DC component and frequencies below 20 Hz, is passed.

S9.9, S9.10 – Push-buttons for selecting the mode of synchronization.

"AF" — The synchronizing circuits are connected to the source of the synchronizing signal via an integrating RC network. The band up to 100 kHz, including the DC component, is passed; higher frequencies are suppressed.

"RF" – The synchronizing circuits are connected to the source of the synchronizing signal via a differentiating RC network. The band from 100 kHz up to the limit frequency, without DC component, is passed. "50 Hz" – A sinusoidal waveform of 50 Hz, derived from the mains frequency, is applied internally.

S9:5 - AUT - při nepřítomnosti synchronizačního signálu odbíhá časová základna samovolně, za přítomnosti signálu však pracuje zcela jako spouštěná. Tato poloha je vhodná pro kmitočty od 100 Hz do mezního kmitočtu, přičemž je možno kontrolovat polohu stopy na stinitku bez přítomnosti synchronizačního signálu (například při měření stejnosměrných úrovní, při měření v můstkových zapojeních apod.).

R163 – Úroveň spouštění umožňuje volit úroveň synchronizačního průběhu, při které časová základna A spustí. Prvek je možné využít ve všech polohách tlačítek synchronizace, včetně AUT.

S8.4+S8.5

- S8.4 nestlačeno základna spouští opakovaně v rytmu udávaném přiváděným synchronizačním signálem, případně v poloze AUT při nepřítomnosti signálu odbíhá samovolně. poloha 1× stlačeno – po přepnutí této polohy je základna zablokována a nelze ji synchronízačním signálem spustit. Po stisknutí tlačítka "Start" (S8.5) a rozsvícení svítící diody je základna schopna provést jediný běh, jakmile přivedený synchronizační signál dosáhne úrovně, nastavené potenciometrem ÚROVEŇ. Při tomto druhu provozu je použití polohy AUT (S9.5) nevhodné.
- R176 ZPOŽDĚNÍ JEMNĚ Tímto desetiotáčkovým potenciometrem se stupnicí se nastavuje poměrný časový posuv zpožďovacího impulsu na pilovém průběhu základny A. Je-li napří-

S9.5 — АВТ — при отсутствии синхронизирующего сигнала генератор развертки работает в режиме автоколебаний. При наличии сигнала генератор работает в режиме запуска. Это положение является подходящим для частот сигнала от 100 Гц до граничной частоты, причем можно контролировать положение линии развертки на экране и без синхронизирующего сигнала (например, при измерении уровней постоянного тока, при измерении в мостовых схемах и т. п.).

R163 – уровень запуска дает возможность установить уровень сигнала синхронизации, при котором генератор развертки А запускается. Элемент можно использовать во всех положениях кнопок синхронизации, включая АВТ.

S8.4+S8.5

S8.4 ненажато - генератор развертки запускается с частотой подводимого синсигнала хронизирующего в положении АВТ, без сигнала генератор работает в режиме автоколебаний. S8.4 1× (нажато) - после переключения в это положение генератор развертки заблокирован и его нельзя запустить сигналом синхронизации. После нажатия на кнопку запуска (S8.5) и зажигания светодиода генератор развертки способен осуществить один прямой ход при подаче синхронизирующего сигнала, который превосходит уровень, установленный потенциометром УРОВЕНЬ. При этом режиме работы не следует использовать режим ABT. (S9.5).

R176 — ЗАДЕРЖКА ТОЧНО — с помощью этого потенциометра на 10 оборотов со шкалой устанавливается относительный временной сдвиг импульса задержки на участке прямого хода генератора развертки А.

S9.5 - "AUT" - Automatic operation of time base A. In the absence of a synchronizing signal, the time base runs freely; however, when a synchronizing signal is applied, the time base operates in the triggered mode. The "AUT." mode is applicable at frequencies from 100 Hz up to the limit frequency. In this mode of operation, the position of the trace on the CRT screen can be controlled also without a synchronizing signal being present (e.g. in the measurement of DC levels, in measurements in bridge connection, etc.).

R163 - This control serves for selecting the level of the synchronizing waveform for triggering time base A. It can be used in all the settings of the push-buttons for synchronization control, including "AUT.".

S8.4, S8.5 - Push-button for triggering mode selec-

S8.4 (undepressed) - The time base operates repeatedly in the rhythm determined by the applied synchronizing signal; in "AUT." operation, when a synchronizing signal is not present, the time base runs freely.

S8.4 "1×" (depressed) - The time base is blocked and cannot be triggered by the synchronizing signal. After depressing the trigge ring push-button (S8.5), and the LED lights up the time base is capable of carrying out only one sweep as soon as the applied synchroni zing signal reaches the level set by means o the potentiometer "LEVEL".

In one-shot operation, the push-button "AUT. (S9.6) is not applicable.

R176 - "DELAY FINE" - Potentiometer for fine de lay setting.

This 10-turn helical potentiometer with sca serves for setting the relative time delay of the retarding pulse on the sawtooth wavefor klad stupnice potenciometru na pátém dílku a přepínač rychlosti základny A v poloze 1 μ s/ díl, je zpožďovací impuls proti okamžiku startu základny A zpožděn o 5× 1 μ s = 5 μ s. Tímto impulsem je dále ovládána, případně přímo spouštěna základna B.

S10 – ČAS/díl – přepínač pro kalibrované nastavení rychlosti základny B.

> Časová základna B je schopna reagovat na synchronizační signál až po příchodu zpožďovacího impulsu, jehož zpoždění proti startu základny A je nastavitelné potenciometrem R176 a přepínačem S11. Z toho vyplývá, že základna B není schopna samostatné funkce.

S9.2 - Tlačítko +/-

Základna B startuje podle nastavení "+" nebo "—" tak, že začátek odběhu je spouštěn buď vzestupnou (+) nebo sestupnou (-) částí synchronizačního signálu. Tlačítko je mimo provoz, je-li tlačítko S9.1 v poloze AUT.

S9.3 - INT/EXT

Přepínač umožňuje volit zdroj synchronizačního signálu pro základnu B.

INT – signál je přiváděn z vertikálního zesilovače, je tvarově shodný s průběhem pozorovaným na obrazovce.

EXT – signál musí být přiveden z vnějšího zdroje na BNC konektor F6.

Tento přepínač je vyřazen z provozu, je-li tlačítko S9.1 v poloze AUT. Если, например, положение потенциометра соответствует пятому делению шкалы и переключатель скорости развертки А находится в положении 1 мкс/дел., то импульс задержки сдвинут относительно начала запуска генератора развертки А на 5×1 мкс = 5 мкс. Импульс далее служит для управления или прямого запуска генератора развертки В.

S10— ВРЕМЯ/дел. — переключатель для калиброванной установки скорости развертки В.

> Генератор развертки В может реагировать на сигнал синхронизации только после поступления импульса задержки, задержка которого относительно запуска развертки А устанавливается потенциометром R176 и переключателем S11. Из этого вытекает, что генератор развертки В не может работать самостоятельно.

S9.2 - Кнопка +/-

Генератор развертки В запускается в зависимости от установки «+» или «-» так, что начало прямого хода синхронизируется восходящим (+) или нисходящим (-) фронтом синхронизирующего сигнала. Кнопка не работает, если кнопка S9.1 находится в положении ABT.

S9.3 — ВНУТР./ВНЕШ.

Переключатель дает возможность выбрать источник синхронизирующего сигнала для развертки В.

ВНУТР. – сигнал снимается с усилителя вертикального отклонения и его форма соответствует сигналу, наблюдаемому на экране.

ВНЕШ. — сигнал должен подаваться от внешнего источника на гнездо F6 — разъем типа BNC.

Этот переключатель не работает, если кнопка S9.1 находится в положении ABT.

of time base A. For example, if the scale of this potentiometer is set to the 5th division line and the speed selector of time base A is set to "1 μ s/div.", then the retarding pulse, in relation to the start of time base A, is delayed by $5 \times 1 \ \mu$ s = 5 μ s. This pulse also controls the directly triggered time base B (if appropriate).

S10 -- "TIME/DIV." -- Calibrated speed selector of time base B.

> Time base B is capable of responding to the synchronizing signal only after the arrival of the retarding pulse, the delay of which behind the start of time base A adjustable with the potentiometer R176 and the selector S11. Consequently, time base B is incapable of autonomous operation.

S9.2 - "+/-" - Change-over switch for setting the synchronizing polarity.

Time base B operates according to the setting "+" or "--" of this push-button control, being started either by the rising edge (+) of the synchronizing signal, or its trailing edge (-). This change-over switch is idle when pushbutton S9.1 is set to "AUT."

S9.3 – "INT./EXT." – Change-over switch for selecting the source of the synchronizing signal for time base B.

"INT." — The signal is drawn from the vertical amplifier; its waveform is the same as that observed on the CRT screen.

"EXT." — The synchronizing signal derived from an external supply must be applied to the BNC connector F6.

This change-over switch is idle when the pushbutton S9.1 is set to "AUT.".

- S9.1 AUT v této poloze jsou ovládací prvky synchronizace základny B vyřazeny z činnosti. Základna je přímo spouštěna zpožďovacím impulsem, řízeným potenciometrem R176.
- S9.4 funkce shodná s S9.8, při S9.1 v poloze AUT je mimo provoz.
- R160 ÚROVEŇ umožňuje volit úroveň synchronizačního průběhu, při které časová základna B spustí. Jeho využití je možné ve všech polohách přepínačů synchronizace kromě polohy AUT.
- F7 Vstup pro přívod externího synchronizačního signálu pro základnu A.
- F6 Vstup pro přívod externího synchronizačního signálu pro základnu B.

Prvky na zadní straně přístroje

- F9 7_ f výstup obdélníkového průběhu, jehož šířka odpovídá době trvání pilového průběhu základny A.
- F10]_ [výstup obdélníkového průběhu základny B. Zpoždění tohoto impulsu proti okamžiku startu základny A je nastavitelné potenciometrem R176 – zpoždění jemně.
- F11 Vstup pro vnější ovládání jasu obrazovky.

6.4. Pokyny pro měření

Ovládací prvky časové základny nastavíme tak, aby časová základna A při rychlosti 1 ms/díl volně odbíhala.

- S9.1 АВТ. в этом положении элементы управления синхронизацией генератора развертки В не работают. Генератор прямо запускается импульсом задержки, управляемым потенциометром R176.
- S9.4 назначение такое же, как и S9.8. При S9.1 в положении АВТ. не работает.
- R160 УРОВЕНЬ дает возможность установить уровень синхронизирующего сигнала, при котором генератор развертки В запускается. Элемент может быть использован во всех положениях переключателей синхронизации, кроме положения АВТ.
- F7 вход для подачи внешнего синрхонизирующего сигнала для генератора развертки А.
- F6 вход для подачи внешнего синхронизирующего сигнала для генератора развертки В.

Элементы на задней панели прибора

- F9 — выход сигнала прямоугольной формы, длительность которого соотвествует длительности прямого хода генератора развертки А.
- F10 С выход прямоугольного импульса генератора развертки В. Задержка этого импульса относительно начала запуска генератора развертки А устанавливается потенциометром R176 – задержка точно.
- F11 вход внешнего управления яркостью электронно-лучевой трубки.

6.4. Указания по измерениям

Элементы управления генератора развертки установить в такие положения, чтобы генератор развертки А работал в режиме автоколебаний

- S9.1 "AUT." This push-button switch serves for putting the synchronizing circuitry of time base B out of operation. The time base is triggered directly by the retarding pulse which is controlled with the potentiometer R176.
- S9.4 The function of this push-button is the same as that of the push-button S9.8; when the switch S9.1 is set to "AUT.", then push-button S9.4 is inoperative.
- R160 "LEVEL" This potentiometer serves for setting the level of the synchronizing waveform at which time base B starts. It is applicable in all the settings of the synchronization selectors, except the position "AUT.".
- F7 Input for applying an external synchronizing signal to time base A.
- F6 -- Input for applying an external synchronizing signal to time base B.

Back panel

- F9 -- "]_ " -- Output of the square-wave voltage waveform, the duration of which tallies with that of the sawtooth voltage waveform of time base A.
- F10 " " Output of the square-wave voltage waveform of time base B. The delay of this pulse behind the instant when time base A starts is controllable with the potentiometer R176 ("DELAY FINE").
- F11 Input for external trace brigthness modulation.

6.4. Instructions for carrying out measurements

The controls have to be set so that time base A runs freely at a speed of 1 ms/div. Then, the function selector S4.1 has to be set to the position "A", the

Přepínač funkce S4.1 přepneme do polohy A, přepínač vstupu S1.2 do polohy 0 a pomocí potenciometru vertikálního posuvu R38 nastavíme stopu na střed rastru. Zkontrolujeme, zda při přepínání vstupního děliče S2 nedochází k posouvání stopy po stínítku a případnou chybu dostavíme pomocí potenciometru R35, na panelu označeného "BAL".

Přepínač vstupu S1.2 vypneme, přepínač vstupu S1.1 necháme nestisknutý (poloha ss) a na vstup F1 přivedeme kabelem signál 40 mV z kalibrátoru. Na stínítku by měl být při nastavení citlivosti děliče S2 do polohy 10 mV/díl a plynulé změny citlivosti R36 do polohy "KAL", obrázek o velikosti 4 cm. Případnou chybu dostavíme pomocí potenciometru R37 umístěného na panelu a označeného "KAL".

Stejným způsobem dostavíme kanál B, pouze případnou chybu v citlivosti je nutné dostavit prvkem R137.

Přepínač funkce S4.1 přepneme do polohy A, přepínač vstupu S1.1 do polohy "SS" a pomocí potenciometru vertikálního posuvu R38 nastavíme na obrazovce osciloskopu stopu asi 1,5 cm od středu stínítka směrem nahoru. Přepínač funkce S4.5 přepneme do polohy B a ovládací prvky kanálu B nastavíme obdobně jako jsme to učinili u kanálu A. Pouze potenciometrem vertikálního posuvu R138 nastavíme stopu asi 1,5 cm od středu stínítka směrem dolů.

Přepínač funkce S4.2 přepneme do polohy "ALT". Na stínítku budou dvě stopy. Po dobu jednoho odběhu vede kanál A, přičemž kanál B nevede, při dalším odběhu časové základny je tomu naopak. Kanály jsou přepínány vždy při skončení jednoho odběhu časové základny. Nyní přepneme funkční přepínač S4.4

> الدينية. الدينية المحمدة

при скорости развертки 1 мс/дел. Переключатель режима работы S4.1 перевести в положение А, переключатель входа S1.2 — в положение 0 и с помощью потенциометра перемещения по вертикали R38 установить линию развертки по центру экрана. Убедиться в том, что при переключении входного делителя нет смещения линии вдоль экрана и, в случае необходимости, установить балансировку потенциометром R35 на панели, обозначенным «БАЛ.». Переключатель входа S1.2 выключить, переключатель входа S1.1 в ненажатом положении с макатом положении с мочатель входа S1.1 в ненажатом положении с макатом с мака

(пост.) и на вход F1 подать с помощью кабеля сигнал калибратора 40 мВ. На экране при установке чувствительности делителем S2 10 мВ/ деление и при установке регулятора чувствительности плавно R36 в положение «КАЛ.» должна иметь место осциллограмма размахом 4 см. Возможную неточность устранить потенциометром R37, расположенным на панели и обозначенным через «КАЛ.». Таким же образом устанавливается канал B, причем погрешность чувствительности необходимо установить элементом R137.

Переключатель режима работы S4.1 находится в положении А, переключатель входа S1.1 — в ненажатом положении и потенциометром смещения по вертикали R38 установить на экране осциллоскопа линию развертки, сдвинутую вверх на прибл. 1,5 см от центра экрана. Переключатель режима работы S4.5 перевести в положение В и элементы управления канала В установить аналогично установке элементов канала A с той только разницей, что потенциометром перемещения по вертикали R138 устанавливается линия на прибл. 1,5 см ниже центра экрана.

Переключатель режима работы S4.2 перевести в положение АЛТ. На экране имеются две линии. В течение одного прямого хода работает канал А, причем канал В не работает и в течение второго прямого хода имеет место обратное положение. Каналы переключаются всегда после окончания одного прямого хода генера-

selector S1.2 to "0" and the trace set into the centre of the CRT screen by means of the vertical shift potentiometer R38. Next, it has to be checked whether switching of the input attenuator S2 causes drifting of the trace over the CRT screen, and, if necessary, potentiometer R35 - marked "BAL." on the panel of the oscilloscope - has to be employed for correction. Then, the switch S1.2 has to be released, the input change-over switch S1.1 set to the undepressed position and a signal of 40 mV, derived from the calibrator, applied to input connector F1. Now, with the sensitivity selector S2 set to "10 mV/div.". and the continuous sensitivity control R36 set to the position "CAL.", an image 4 cm high should be displayed. An error, if any can be corrected by means of potentiometer R37, marked "CAL," on the panel of the oscilloscope.

The controls of channel B have to be set in the same manner, as follows, and an error in the sensitivity, if any, has to be corrected by means of the control R137.

With the function selector S4.1 in the position "A", and the input selector S1.1 set to the position DC, the trace has to be shifted approximately 1.5 cm above the centre of the CRT screen by means of the vertical shift potentiometer R38. The functions selector S4.5 has to be set to the position "B" and the controls of channel B adjusted similarly as those of channel A, the only difference being that the trace has to be shifted approximately 1.5 cm below the centre of the CRT screen by means of the vertical shift potentiometer R138.

The function selector S4.2 hat to be set to the position marked "ALT.". Now, two traces will be displayed on the screen. During one sweep, channel A is conductive and channel B idle; during the next sweep the situation is vice versa. The channels are switched always at the termination of one sweep of the time base. When the function selector S4.4 is set to "CHOP.", do polohy "CHOP.". Na stínítku se opět objeví dvě stopy. Jestliže nastavíme rychlost časové základny na 10 µs/díl, zjistíme, že obě stopy jsou složeny z krátkých dílčích úseček. Je to proto, že při tomto druhu činnosti jsou oba kanály přepinány kmitočtem asi 500 kHz, což znamená, že každý kanál střídavě po dobu 1 μ s vede a po další 1 μ s je blokován.

Po zapnutí funkčního přepínače S4.3 do polohy A±B je na stinitku pouze jedna stopa. Při tomto způsobu činnosti zesilují oba kanály A i B.

6.5. Použití jednotlivých druhů činnosti vertikálního zesilovače

Je-li funkční přepínač S4.1 v poloze A nebo S4.5 v poloze B, pracuje zesilovač jako jednokanálový a obsluha se v těchto případech nijak neliší od běžné práce s osciloskopem. Při těchto druzích činnosti je třeba, aby byl přepínačem synchronizace S3.1 nebo S3.2 zajištěn vhodný odběr synchronizačního signálu. Dále si všimněme tří zbývajících méně běžných druhů činnosti:

- 1. Přepínání časovou základnou
- 2. Přepínání kmitočtem asi 500 kHz
- 3. Poloha A±B

6.5.1. Přepínání časovou základnou

Dva signály, které chceme srovnávat, přivedeme na vstupy F1 a F101 kanálů A a B. Funkční přepínač S4.1 přepneme do polohy A, přepínač synchronizace S3.1 přepneme do polohy A, čímž je zajištěno spouštění časové základny signálem kanálu A. Pomoci

тора развертки. Затем переключатель режима работы S4.4 перевести в положение ЧОП. На экране снова появляются две линии. Если установить скорость развертки 10 мкс на деление, то обнаруживается, что обе линии состоят из коротких отрезков. Это объясняется тем, что при этом режиме работы оба канала коммутируются частотой 500 кГц. Это значит, что каждый канал переменно работает в течение 1 мкс и в течение следующей 1 мкс он заблоки-

После переключения переключателя режима работы S4.3 в положение A±B на экране изображается только одна линия. При этом режиме работы усиливаются оба канала А и В.

6.5. Использование отдельных режимов работы усилителя вертикального отклонения

Если переключатель режима работы S4.1 находится в положении А или S4.5 — в положении В, то усилитель работает в качестве одноканального и обслуживание прибора в этих случаях ничем не отличается от обычной работы с осциллоскопом. При этих режимах работы необходимо, чтобы переключателем синхронизации S3.1 или S3.2 был обеспечен подходящий выбор сигнала синхронизации. Ниже будут описаны три оставшихся режима работы:

- 1. Коммутация сигналом развертки
- 2. Коммутация частотой прибл. 500 кГц
- 3. Положение А±В

6.5.1 Переключение сигналом развертки

Два сигнала, которые должны наблюдаться, подаются на входы F1 и F101 каналов A и B. Переключатель режима работы S4.1 перевести в положение А, переключатель синхронизации S3.1 перевести в положение А, в результате чего обеспечивается запуск развертки сигналом канала А.

once more two traces will be displayed on the CRT screen. Provided the time base speed is set to 10 μ s/div. it can be observed that the two traces are formed by several short sections. The reason for this is that in this mode of operation the two channels are switched alternately at a frequency of approximately 500 kHz, which means that each channel is conductive for the duration of 1 μ s and for the next 1 μ s it is blocked.

After setting the function selector S4.3 to "A \pm B", only one trace is displayed on the CRT screen; in this mode of operation, the two channels A and B amplify.

6.5. Application of the individual operation modes of the vertical amplifier

When the function selector S4.1 is in the position "A", or the selector S4.5 is set to "B", then the amplifier operates as a single-channel device and the attendance of this oscilloscope does not differ in any way from that of any other oscilloscope. In these modes of operation, it is necessary to ensure the drawing of a suitable synchronizing signal by means of the synchronization selector S3.1 to S3.2, as appropriate. The following three modes of operation, which are less commonly employed, remain to be described:

- 1. Switching by the time base.
- 2. Switching by a frequency of approximately
- 500 kHz.
- 3. Operation "A±B".

6.5.1. Switching by the time base

The two signals which have to be mutually compared have to be applied to the inputs F1 and F101 of channels A and B respectively. The function selector S4.1 must be set to "A" and the synchronization selector S3.1 to position "A", in order to ensure triggering of the time base by a signal derived from channel A. An image of suitable size has to be adjusted in the lower vstupního děliče S2 a vertikálního posuvu R38 nastavíme v dolní polovině stínítka obrázek vhodné velikosti.

Funkční přepínač S4.5 přepneme do polohy B a stejným způsobem nastavíme obrázek vhodné velikosti. Potom přepneme funkční přepínač do polohy "ALT.". Časová základna je spouštěna signálem z kanálu A a lze pozorovat časovou relaci signálů, přiváděných do obou kanálů.

Pro snazší pozorování obou měřených signálů můžeme obrázky na stínítku vzájemně posouvat, případně měnit polaritu kanálu B tak, jak je pro měření třeba.

V tomto druhu činnosti je nutno použít synchronizace signálem z kanálu A nebo z kanálu B.

6.5.2. Přepínání kmitočtem 500 kHz

Tento druh činnosti dvoukanálového provozu použijeme např. tehdy, chceme-li pozorovat jednorázový jev na dvou různých místech měřeného obvodu. Přepínání časovou základnou v takovém případě použít nelze, protože princip přepínání kanálů až po jednom odběhu časové základny vylučuje možnost pozorování jednorázového jevu současně ve dvou bodech.

Při přepínání kmitočtem 500 kHz je každý kanál otevřen po dobu asi 1 μ s a po další 1 μ s je uzavřen, takže se současně na stínítku vykreslují dva obrázky složené z úseků, jejichž délka je 1 μ s. Z toho vyplývá, že lze tímto způsobem ještě dobře pozorovat napěťové průběhy o délce trvání 1 ms. Při pozorování kratších průběhů už ruší pozorování nespojitost stopy na stínítku.

Při tomto druhu činnosti je nutno použít synchronizace signálem z kanálu A nebo z kanálu B. Obor С помощью входного делителя S2 и элемента смещеня по вертикали R38 установить требуемую осциллограмму в нижней половине экрана. Переключатель режима работы S4.5 перевести в положение B и таким же образом установить осциллограмму подходящих размеров. Затем переключатель режима работы перевести в положение АЛТ. Генератор развертки запускается сигналом канала A и можно наблюдать временные соотношения сигналов, подаваемых на оба канала. Для более удобного наблюдения обоих измеряемых сигналов можно осциллограммы на экране взаимно сдвигать или менять полярность канала B по необходимости.

В этом режиме работы необходимо для синхронизации использовать сигнал канала А или канала В.

6.5.2. Коммутация частотой 500 кГц

Этот режим работы двухканального режима работы используется например, в том случае, если необходимо наблюдать однократный процессс в двух различных точках измеряемой схемы. Коммутация сигналом развертки в этом случае не применима, так как принцип коммутации каналов по истечении прямого хода развертки исключает возможность одновременного наблюдения однократного явления в двух точках.

При коммутации частотой 500 кГц каждый канал открыт на время прибл. 1 мкс, причем на следующий интервал 1 мкс он заперт, в результате чего на экране одновременно изображаются две осциллограммы, состоящие из отрезков длительностью 1 мкс. Из этого вытекает, что указанным способом можно наблюдать сигналы длительностью до 1 мс. При наблюдении более коротких сигналов начинает мешать непрерывность линии на экране.

При этом режиме работы необходимо использовать синхронизацию сигналом канала А или ка-

half of the CRT screen by means of the input attenuator S2 and the vertical shift control R38.

The function selector S4.5 has to be set to "B" and then, in the same manner as described above, an image of suitable size has to be adjusted on the screen. Then, the function selector has to be set to "Alt." now, the time base is triggered by a signal derived from channel A, and the time relation between the two signals applied to the two channels can be observed. In order to facilitate studying of the two measured signals, their images on the CRT screen can be shifted mutualy and/or the polarity of channel B changed-over as required for the measurement. In this mode of operation, it is necessary to employ for synchronization a signal drawn from either channel A or channel B.

6.5.2. Switching by a frequency of 500 kHz

This mode of double-channel operation is applicable e.g. when one-shot phenomena occurring at two points of the measured circuit have to be observed. In this case, switching by the time base cannot be utilized, as the principle of channel switching at the end of the time base sweep makes it impossible to observe one-shot phenomena at two points simultaneously.

When the frequency 500 kHz is employed for switching, each channel is open for approximately 1 μ s and closed for the next 1 μ s; consequently, two images formed by sections of 1 μ s duration appear on the CRT screen simultaneously. Thus, in this mode, voltage waveforms of 1 ms duration can still be observed conveniently. When waveforms of shorter duration are displayed, the discontinuity of the traces on the CRT screen hinders observation.

In this mode of operation, it is necessary to employ for synchronization a signal drawn from either channel A

synchronizace na přepínači časové základny zvolíme "NF".

6.5.3. Poloha A±B

Při tomto druhu činnosti zesilovače lze provádět součet nebo rozdíl dvou signálů, měřit souměrná napětí a navíc má tento druh činnosti ještě jedno použití.

Často je třeba měřit signál, který je superponován na jiném nežádoucím signálu, jako např. sítové bručení aj. V takovém případě umožňuje vertikální zesilovač značné potlačení nežádoucího signálu. Na vstupní konektor kanálu A (F1) přivedeme pozorovaný signál včetně nežádoucí superpozice a na druhý vstup (F101) přivedeme pouze nežádoucí signál (např. sítový brum). Jestliže přepneme přepínač S3.3 polarity kanálu B do polohy "—", dosáhneme na nižších kmitočtech při pečlivém dostavení zesílení obou kanálů více než 20násobného potlačení nežádoucího signálu.

6.5.4. Poloha X-Y

Při tomto druhu činnosti pracuje zesilovač jako X–Y. Signál na vstupu A je zobrazován v ose Y, signál na vstupu B v ose X. Zesilovač zajišťuje fázovou chybu ≦ 5° do kmitočtu 300 kHz, je však použitelný do kmitočtu 4 MHz.

6.6. Použití jednotlivých druhů činnosti časových základen

Pro seznámení obsluhy s funkcí časové základny je nejprve popsán nejjednodušší způsob provozu, využívající pouze základnu A.

нала В. Способ синхронизации на переключателе генератора развертки устанавливается НЧ.

6.5.3. Положение А±В

При этом режиме работы усилителя можно осуществлять сумму или разность двух сигналов, измерять симметричные, напряжения и, кроме того, имеется еще один способ использования этого режима.

Часто необходимо измерять сигнал, который наложен на другой нежелательный сигнал, как например, наводка от сети. В этом случае усилитель вертикального отклонения дает возможность существенного подавления сигнал помех. На входное гнездо канала А (F1) подается наблюдаемый сигнал, включая нежелательный сигнал наложения, а на второй вход (F101) подается только нежелательный сигнал (например, сигнал наводки от сети). Если переполярности канала S3.3 ключатель В перевести в положение «--», то в области нижних частот после тщательной установки коэффициента усиления обоих каналов обеспечивается более 20-кратное подавление нежелательного сигнала.

6.5.4. Положение Х-Ү

В этом режиме работы усилитель работает по системе Х—Ү. Сигнал на входе А изображается по оси Ү, сигнал на входе В изображается по оси Х. Усилитель обеспечивает погрешность фазы ≦ 5° вплоть до частоты 300 кГц, однако применим вплоть до частоты 4 МГц.

6.6. Использование отдельных режимов работы генератора развертки

Для ознакомления обслуживающего персонала с работой генератора развертки сигнала описывается самый простой способ работы, основанный на использовании только генератора развертки А.

or channel B, and the "AF" range of synchronization has to be selected by means of the appropriate synchronization selector.

6.5.3. Operation mode "A±B"

In this mode of operation of the amplifier, the sum of, or the difference between two signals measured, and moreover this method is suitable also for a further application, as follows:

Often it is necessary to measure a signal which is superimposed on another — unwanted — signal, such as mains hum, etc. In such a case, the vertical amplifier enables considerable suppression of the unwanted signal. The studied signal, including its unwanted superposition, has to be applied to input connector F1 of channel A, and to the second input F101 (of channel B) has to be applied only the unwanted signal (e.g. mains hum). After switching the polarity selector S3.3 of channel B to the position "—", and carefully adjusting the amplification of the two channels, at lower frequencies suppression of the unwanted signal of more than 20× can be attained.

6.5.4. Operation mode "X-Y"

In this mode, the amplifier operates in the "X–Y" manner. The signal applied to input "A" is displayed in the Y-axis; the signal applied to input "B", in the X-axis. The amplifier ensures a phase error $\leq 5^{\circ}$ al frequencies up to 300 kHz, however it is applicable up to the frequency 4 MHz.

6.6. Application of the individual operation modes of the time bases

In order to acquaint the operator with the functions of the time bases, first a description is given of the simplest mode of application employing only time base A.

- 6.6.1. Nastavení ovládacích prvků časové základny A pro zobrazení napěťového průběhu kalibrátoru
- S8.1 přepínač funkcí do polohy A
- S11 ČAS/díl (A) do polohy 1 ms
- S9.6 tlačítko polarity (A) do polohy +
- S9.7 tlačítko zdroje signálu do polohy INT
- S9.5 tlačítko do polohy AUT
- R163 úroveň asi do středu dráhy S8.4 – v nestlačené poloze
- S10 ČAS/díl (B) do polohy VYP.
- S7 LUPA do polohy 1 \times

R166

R167 — posuvy X hrubě a jemně do středu dráhy
 R235 — potenciometr regulace jasu na pravý doraz

Na vertikálním zesilovači je nutno nastavit posuv použitého kanálu do středu. Neobjeví-li se na stínítku stopa, je nutno při stisknutém tlačítku STŘEDĚNÍ nastavit stopu do středu stínítka obrazovky prvky PO-SUV Y (R38) a POSUV X – hrubě (R166).

Po uvolnění tlačítka nastavte jas a ostrost stopy a horizontálně i vertikálně dostavte stopu do středu stínítka.

Vstup použitého vertikálního kanálu s citlivostí nastavenou na 0,2 V/díl propojte stíněným kabelem se zdířkou kalibrátoru, označenou 0,4 V. Odběr synchronizace z vertikálního zesilovače musí být

- 6.6.1. Установка элементов управления генератора развертки А для изображения сигнала калибратора
- S8.1 — переключатель режима работы в положение А - ВРЕМЯ/деление (А) в положение S11 1 MC S9.6 - кнопка полярности (А) в положение +- кнопка источника сигнала в положе-S9.7 ние ВНУТР. S9.5 – кнопка в положение ABT. R163 уровень прибл. в средней точке S8.4 - в ненажатом положении - ВРЕМЯ/деление (В) в положение S10 выкл - ЛУПА в положение 1× **S**7 смещение X грубо и точно в средних R166 R167 положениях; R235 потенциометр регулировки яркости в положении правого упора

На усилителе вертикального отклонения необходимо установить смещение используемого канала по центру экрана. Если на экране не появляется осциплограмма, то при нажатой кнопке ЦЕНТРОВКА установить линию по центру экрана трубки ручками СМЕЩЕНИЕ Y (R38) и СМЕЩЕНИЕ X — грубо (R166).

После отпускания кнопки установить яркость и резкость осциллограммы и линию развертки установить по центру экрана по горизонтали и вертикали.

Вход используемого вертикального канала с чувствительностью, установленной 0,2 В/дел., соединить экранированным кабелем с зажимом калибратора, обозначеным 0,4 В. Способ синхронизации сигналом усилителя вер-

.

6.6.1. Adjustment of the controls of time base A for displaying the voltage waveform of the calibrator

The initial settings are as follows:

- S8.1 Function selector to the position "A"
- S11 Selector "TIME/DIV." (A) to the position 1 ms
- S9.6 Polarity push-button (Å) to the position "+"
- S9.7 Push-button for sync source selection to the position "INT."
- S9.5 Push-button selector to the position "AUT."
- R163 Level selector to the centre of its track
- S8.4 Push-button for mode selection to the undepressed position.
- S10 Selector "TIME/DIV." (B) to the position "OFF"
- S7 Push-button "MAG." to the position $"1\times"$

R166

- R167 Horizontal (X) shift controls, coarse and fine, to the centres of their tracks
- R235 Brightness control fully clockwise

The vertical shift control of the employed channel has to be set to the centre. If a trace does not appear on the CRT screen, then the push-button marked "BEAM FIND." must be depressed in order to enable setting of the trace into the centre of the screen by means of the controls "Y-SHIFT" (R38) and "X-SHIFT" (R166).

After releasing the push-button, the brightness and focus have to be adjusted and the trace reset into the centre of the screen by means of the horizontal and vertical controls.

The input of the employed vertical channel, the sensitivity of which has been set to 0.2 V/div., has to be interconnected with the output socket marked "0.4 V" of the calibrator by means of the supplied coaxial screened cable. The synchronization from the verpřepnut na použitý kanál. Na obrazovce se pak objeví obdélníkový průběh kalibrátoru.

Otáčením potenciometru ÚROVEŇ (A) lze zvolit úroveň spouštění základny. V okrajových polohách potenciometru dochází k vysazení ze synchronismu.

Po přepnutí tlačítka "+/–" do polohy "–" spouští základna od sestupné části průběhu.

Při změně pozorovaného signálu je nutno volit optimální nastavení rychlosti zákľadny, frekvenčního pásma synchronizace, polarity a zdroje synchronizace a úrovně spouštění s přihlédnutím k popisu činnosti ovládacích prvků a popisu vlastností přístroje.

Po uvedení základny A do synchronního provozu je možno použít i základny B ve zpoždovaném provozu.

6.6.2. Nastavení ovládacích prvků pro zpožďovaný provoz

Při nastavení ovládacích prvků základny A pro zobrazení napěťového průběhu kalibrátoru nastavte prvky základny B takto:

- ČAS/díl (B) do polohy 0,1 ms/díl S10

- stilsknout tlačítko AUT (B) S9.1 R176 – zpoždění jemně do 5. polohy stupnice

Na zobrazeném obdélníkovém průběhu kalibrátoru se objeví úsečka se zvýšeným jasem. Úsečku lze potenciometrem R176 ZPOŽDĚNÍ JEMNĚ posunout na libovolnou část pozorovaného průběhu. Její délku lze měnit nastavením přepínače ČAS/díl (B).

Po přepnutí tlačítka funkcí S8.2 do polohy ALT objeví se na stínítku druhá stopa nad původní. Tato stopa

тикального отклонения должен соответствовать используемому каналу. В этом случае на экране трубки появляется прямоугольный сигнал калибратора.

Путем вращения потенциометра УРОВЕНЬ (А) можно выбрать уровень запуска развертки. В крайних положениях потенциометра имеют место срывы синхронизации.

После переключения кнопки +/-- в положение - генератор развертки запускается снисходящим фронтом сигнала.

При измерении наблюдаемого сигнала необходимо установить оптимальную установку скорости развертки, полосу частот синхронизации, полярность и источник синхронизации, а также уровень запуска с учетом описания назначения элементов управления и описания параметров прибора.

После установки синхронного режима работы генератора развертки А можно использовать и генератор развертки В в режиме задержки.

6.6.2. Установка элементов управления для режима задержки

При установке элементов управления генератора развертки А для изображения сигнала калибратора установить элементы генератора развертки В следующим образом:

 ВРЕМЯ/деление (В) в положение S10 0,1 мс/деление

— нажать на кнопку АВТ. (В)

S9.1 R176 — задержка точно в 5-м положении шкалы

На изображаемой осциллограмме прямоугольного сигнала калибратора появляется отрезок повышенной яркости. Отрезок можно сдвигать в любую точку осциллограммы потенциометром R176 ЗАДЕРЖКА ТОЧНО. Длительность отрезка можно установить переключателем ВРЕМЯ/ дел. (В).

После переключения кнопки режима работы S8.2 в положение АЛТ. на экране появляется

tical amplifier must be switched to the employed channel. Then, the rectangular waveform of the calibrator appears on the CRT.

The triggering level of the time base can be selected by adjusting the potentiometer "LEVEL" (A). When this potentiometer is set to either of its extreme positions, synchronism becomes disturbed. When the push-button selector "+/--" is set to the position "--", the time base is triggered by the trailing edge of the waveform.

Whenever the observed signal is altered, it is necessary to select optimum setting of the time base speed, of the frequency band of synchronization, of the polarity and of the source of synchronization, as well as of the triggering level, whilst taking into consideration the fuctions of the individual controls and the operational properties of the oscilloscope.

After synchronism of time base A has been established, it is possible to employ also time base B in the delayed mode of operation.

6.6.2. Adjustment of the controls for delayed operation

With the controls of time base A set as described above for displaying the voltage waveform of the calibrator, the controls of time base B have to be set as follows:

- "TIME/DIV." (B) to the position "0.1 ms/ S10 /div.'
- Push-button "AUT.B" has to be depressed S9.1
- R176 Fine delay control to the 5th division line on its scale

A certain section of increased brightness appears on the displayed waveform of the calibrator. This section can be shifted to any part of the observed waveform by means of the potentiometer "DELAY FINE" (R176). The length of this section can be controlled by adjusting the potentiometer "TIME/DIV." (B).

After switching-over the function selector push-but? ton S8.2 to the position "ALT.", a second trace

je přisvětleným úsekem na základně A, rozvinutým na celou šíři stínítka. Rychlost rozmítání této stopy je na stupnici přepínače ČAS/díl (B) (S10).	вторая линия развертки над первой. Эта линия соответствует подсвеченному отрезку на линии развертки А, равстянутому по всей ширине экрана. Скорость развертки этого отрезка определятся шкалой переключателя ВРЕМЯ/	appears on the CRT screen above the original trace. This second trace is the section of increased bright- ness on time base A after being spread over the who- le width of the screen. The speed at which this trace is swept is given by the scale of the selector S10 –
Při tomto nastavení ovládacích prvků je základna B přímo spouštěna zpožďovacím impulsem. Ovládací prvky S9.2–4 a R160 jsou mimo provoz.	деление (В) (S10). При такой установке элементов управления ге- нератор развертки В запускается прямо им- пульсом задержки. Элементы управления S9.2—4 и R160 не работают.	"TIME/DIV." (B). With the controls set as described, time base B is trig- gered directly by the retarding pulse. The controls S9.2 to S9.4 and R160 are idle.
Přepnutím tlačítka S8.1 do polohy B zobrazuje se na stínítku pouze zpožděná základna B.	При переключении кнопки S8.1 в положение В на экране изображается только линия ра- звертки задержанного генератора В.	When the push-button switch S8.1 is changed-over to the position "B", only the delayed time base B is displayed on the CRT screen.
6.6.3. Nastavení pro zpožďovaný provoz synchronizačních obvodů základny B	6.6.3. Установка режима задержки цепей синхронизации гене- ратора развертки В	6.6.3. Adjustment of the controls for delayed operation of the synchronizing circuits of time base B
Pro vyloučení horizontálního třesení při velkém zpož- dění základny B je vhodné použít vlastního synchro- nizačního obvodu této základny. Ovládací prvky základny B je přitom nutno při zobra- zeném průběhu kalibrátoru základnou A nastavit tak- to:	Для исключения горизонтального дрожания при больших значениях времени задержки генера- тора В целесообразно использовать сообствен- ную схему синхронизации этого генератора. Элементы управления генератором развертки В при изображении сигнала калибратора с по- мощью развертки А установить следующим об- разом:	In order to eliminate horizontal jitter when a long delay of time base B is selected, it is convenient to employ the synchronizing circuit of this time base. In this case, the controls of time base B (in addition to those for displaying the calibrating waveform by time base A) have to be adjusted as follows:
S10 — ČAS/díl (B) do polohy 0,1 ms/díl	S10 – ВРЕМЯ/деление (В) в положение 0,1 мс/деление	S10 - "TIME/DIV." (B) to the position "0.1 ms/
S9.4 – tlačítko SS/ST do polohy ST	S9.4 — кнопка ПОСТ./ПЕРЕМ. в положение ПЕРЕМ.	S9.4 — Push-button "DC/AC" to the position "AC"
S9.2, S9.3 – tlačítka polarity a zdrojů do polohy + a INT	S9.2, S9.3 — кнопка полярности и источников в по- ложение + и ВНУТР.	S9.2, S9.3 - Selectors of synchronizing polarity and source to the position "+" and "INT."
R176 – zpoždění jemně do 5. polohy stupnice	R176 задержка плавно до 5-го деления	respectively R176 — Fine delay control to the 5th position on its
R160 — do středu dráhy S9.1 — do polohy AUT (B) vypnuto	шкалы R160 — в среднее положение шкалы S9.1 — в положение ABT. (В) выключено	scale R160 — To the centre of its track S9.1 — Push-button "AUT. B" has to be released
Na zobrazeném obdélníkovém průběhu kalibrátoru se objeví úsečka se zvýšeným jasem, jejíž začátek le- ží na vzestupné části obdélníkového průběhu.	На изображаемой осциллограмме прямоуголь- ного сигнала калибратора появляется отрезок с повышенной яркостью, начало которого лежит на восходящем фронте прямоугольного сигнала	A section of increased brightness appears on the displayed waveform of the calibrator; the begining of this section is on the rising edge of the rectangular waveform.

сигнала.

Otáčením potenciometru ÚROVEŇ (B) lze volit úroveň obdélníkového průběhu, při které spustí základna B. V okrajových polohách potenciometru dojde k vysazení základny B, což se projeví zmizením přisvětleného úseku.

Po přepnutí tlačítka +/- (S9.2) do polohy - spouští základna B od sestupné části průběhu.

Otáčením potenciometru ZPOŽDĚNÍ JEMNĚ R176 lze volit jeden z obdé!níkových průběhů, při kterém základna B spouští.

Při změně pozorovaného signálu je nutno volit optimální nastavení rychlostí obou základen (S10, S11), vhodné nastavení synchronizačních obvodů, úrovní spouštění a velikosti zpoždění mezi základnami s přihlédnutím k popisu činnosti ovládacích prvků a popisu vlastností přístroje.

6.6.4. Připojení přístroje k jiným zařízením

Na panelu přístroje jsou samostatně vyvedeny na BNC konektory vstupy pro externí synchronizaci obou základen. Lze na ně přivést libovolný synchronizační signál v mezích uvedených v kapitole 3, nejlépe stíněným kabelem, pro vyšší kmitočty impedančně přizpůsobeným a zakončeným vedením.

Signál z výstupních konektorů na zadní straně přístroje může být odebírán stíněným kabelem, zakončeným pokud možno nízkou impedancí (TTL obvody).

Zkratem výstupních konektorů nelze časovou základnu poškodit ani ovlivňovat její funkci. Na konektory však nesmí být připojeno cizí napětí.

При вращении потенциометра УРОВЕНЬ (В) можно выбирать уровень прямоугольного сигнала, при котором запускается развертка В. В крайних положениях потенциометра имеет место срыв генератора развертки В, что проявляется в исчезновении подсвеченного участка.

После переключения кнопки +/- (S9.2) в положение – генератор развертки В запускается нисходящим фронтом сигнала.

Путем вращения потенциометра ЗАДЕРЖКА ТОЧНО (R176) можно выбрать один из прямоугольных периодов, при котором запускается генератор развертки В.

При изменении наблюдаемого сигнала необходимо выбрать оптимальную установку скорости развертки обоих генераторов (S10, S11), подходящую установку схем синхронизации, уровни запуска и величины задержки второго генератора с учетом назначения элементов управления и параметров прибора.

6.6.4. Подключение прибора к другим устройствам

На панели прибора самостоятельно выведены с помощью коаксиальных разъемов BNC входы для внешней синхронизации обоих генераторов развертки. На эти входы можно подать любой синхронизирующий сигнал в соответствии с данными, приведенными в главе 3, лучше всего, с помощью экранированного кабеля и согласованной линии в области более высоких частот.

Сигнал с выходных гнезд на задней панели прибора может сниматься с помощью экранированного кабеля с согласованной нагрузкой или малым нагрузочным сопротивлением (микросхемы ТТЛ).

Короткое замыкание выходных гнезд не может вывести из строя генератор развертки или оказать влияние на ее работу. Однако, на гнезда не следует подавать внешнее напряжение.

The level of the rectangular waveform, at which time base B starts, can be selected by means of the potentiometer "LEVEL" (B). When this potentiometer is set to either of its extreme positions, time base B ceases to operate and the section of increased brightness disappears.

After switching-over the push-button "+/-" (S9.2) to the position "--", time base B is triggered by the trailing edge of its waveform.

One of the rectangular waveforms which triggers time base B can be selected by means of the potentiometer "DELAY FINE" (R176).

Whenever the observed signal is altered, it is necessary to select the optimum speeds of both time bases (with S10, S11), suitable setting of the synchronizing circuits, the triggering levels and the length of the delay between the time bases, whilst taking into consideration the functions of the controls and the properties of the oscilloscope.

6.6.4. Connection of the oscilloscope to other instruments

The inputs for external synchronization of the two time bases are brought out separately to BNC connectors on the panel of the oscilloscope. To these connectors can be applied any synchronizing signals (which meet the conditions given in Section 3. of this Manual), preferably over screened cables which for higher frequencies are impedance-matched and terminated. The signals from the output connectors on the back panel of the oscilloscope can be drawn by means of screened cables terminated in low impedances (TTL circuits).

The time base of the oscilloscope cannot be damaged, nor can its operation be affected by short-circuiting of the output connectors. However, an external voltage must not be applied to them.

6.6.5. Kontrola přesnosti časových základen

V přístroji je vestavěn kalibrátor s přesným výstupním napětím i kmitočtem. Při zobrazení obdélníkového průběhu kalibrátoru rychlostí základny 1 ms/díl musí šířka jednoho cyklu obdélníkového průběhu být rovna 1 dílku v toleranci udané v technických údajích. Případnou chybu lze dostavit uvnitř přístroje (viz kapitola 9. "Pokyny pro údržbu přístroje").

6.6.6. Měření času

Časová základna umožňuje zjistit časový interval mezi dvěma průběhy nebo dvěma body jednoho průběhu až do délky rastru. Takové měření se provádí následujícím způsobem:

- a) Na rastru odečtěte vzdálenost v dílcích mezi dvěma body, jejichž časový interval hledáte.
- b) Tuto vzdálenost násobte koeficientem, odečteným na stupnici ČAS/díl použité časové základny.
- c) Dělením tohoto výsledku koeficientem časové lupy dostanete skutečný časový interval.

Pro názornost předpokládejme, že přepínač ČAS/díl je v poloze 1 ms, přepínač lupy v poloze 10, horizontální vzdálenost odečtená na rastru je 5 dílků.

$$\frac{\text{vzdálenost} \times (\text{čas/díl})}{\text{údaj časové lupy}} = \frac{5 \text{ d} \times 1 \text{ ms}}{10} = 0,5 \text{ ms}$$

6.6.7. Měření frekvence

Toto měření provádějte odečtením počtu průběhů na 10 dílků. Frekvenci pozorovaného průběhu lze vy-

6.6.5. Контроль точности генераторов развертки

В приборе установлен калибратор с точным выходным напряжением и частотой. При изображении прямоугольного сигнала калибратора и при скорости развертки 1 мс/деление длительность одного периода прямоугольного сигнала должна равняться одному делению с допусками, приведенными в технических данных. Возможную погрешность можно устранить элементами внутри прибора (см. главу 9. «Указания по уходу за прибором»).

6.6.6. Измерение времени

Генератор развертки дает возможность установить интервал времени между двумя сигналами или между двумя точками сигнала вплоть до длительности, соответствующей размеру растра. Такие измерения осуществляются следующим образом:

- а) на экране отсчитать расстояние в делениях между двумя точками, интервал времени между которыми должен быть определен,
- б) это расстояние умножить на коэффициент, отсчитанный по шкале ВРЕМЯ/деление используемого генератора развертки,
- в) путем деления полученного результата на коэффициент лупы получается действительное значение интервала времени.

Для наглядности предполагается, что переключатель ВРЕМЯ/деление находится в положении 1 мс, переключатель лупы в положении 10, горизонтальное расстояние, отсчитанное на экране, равно 5 делениям.

$$\frac{\text{расстояние } \times (\text{время/деление})}{\text{показание лупы}} = \frac{5 \text{д} \times 1 \text{ мс}}{10} = 0,5 \text{ мс}$$

6.6.7. Измерение частоты

Это измерение осуществляется путем отсчета количества периодов, приходящихся на 10 де-

6.6.5. Checking the accuracy of the time bases

The oscilloscope has a built-in calibrator which supplies an accurate output voltage and frequency. When the rectangular waveform of this calibrator is displayed at a time base speed of 1 ms/div., the width of the display of one cycle must tally with one division on the graticule (the tolerance is given in Section 3. of this Manual). An inaccuracy of the time base, if any, will have to be corrected (see Section 9.).

6.6.6. Measurement of a time slot

The time base of the oscilloscope enables the measurement of a time slot between two waveforms, or between two points of one waveform, up to the whole length of the graticule. The procedure for such a measurement is as follows:

- a) The distance between the two points, the time slot between which is required, has to be read on the graticule in terms of devisions.
- b) The distance ascertained has to be multiplied by the coefficient read on the scale "TIME/DIV." of the employed time base.
- c) The actual duration of the measured time slot is obtained by dividing the attained product by the coefficient of time magnification.

Supposing the selector "TIME/DIV." is set to the position "1 ms", the time magnification to the position " $10\times$ ", and the horizontal distance of 5 divisions is read on the graticule, then the result of the measurement is as follows:

$$\frac{\text{Distance \times Setting of "TIME/DIV."}}{\text{Coefficient of time magnification}} = \frac{5 \text{ div.} \times 1 \text{ ms}}{10} = 0.5 \text{ ms}$$

6.6.7. Measurement of a frequency

This measurement has to be carried out by ascertaining the number of cycles within 10 divisions lines ;

počítat podle uvedeného vzorce. Pro názornost předpokládejme počet průběhů na 10 dílků = 12 při rychlosti rozmítání 1 us/díl.

$$\frac{\text{počet průběhů}}{10 \times \text{čas/díl}} = \frac{12}{10 \times 10^{-6}} = 1,2 \text{ MHz}$$

7. POPIS MECHANICKÉ KONSTRUKCE

Osciloskop BM 566A je řešen se svislým uspořádáním ovládacího panelu. Střed předního panelu tvoří obrazovka s příslušnými ovládacími prvky. Vlevo je umístěn vertikální zesilovač, vpravo časová základna. Zástavbové prostory jsou odděleny vnitřními přepážkami, které elektricky stíní jejich obvody a současně slouží jako nosné prvky v přední části skříně. Přední část je ukončena v úrovni vychylovacích desek obrazovky příčnou deskou. V druhé části osciloskopu jsou umístěny obvody se stabilizátory a obvody vysokonapěťového zdroje. Obvody osciloskopu jsou řešeny technikou plošných spojů, vyjma obvodů VN, kde je použito z napěťových důvodů keramických lišt. Násobič urychlovacího napětí je zalit izolační hmotou zabraňující pronikání vlhkosti do jeho obvodů. Ke stavbě osciloskopu bylo použito běžných konstrukčních prvků. K přepínání rychlostí časové základny a k přepínání citlivosti vertikálního zesilovače bylo použito rotačních přepínačů a řadičů, k ostatnímu přepínání bylo použito tlačítek. Za účelem snížení teploty uvnitř přístroje byly výkonové tranzistory napájecích zdrojů umístěny na chladicí žebra vně přístroje. V prostoru pro vertikální zesilovač jsou umístěny obvody vertikálního zesilovače vyjma obvodů koncového stupně. Propojení mezi oběma částmi je provedeno zpožďovacím kabelem. Dostavovací prvky jsou přístupné po demontáži krytů přístroje. Obvody synchronizačního zesilovače jsou umístěny v prostoru

лений. Частоты наблюдаемого сигнала можно определить по нижеприведенной формуле. Для наглядности предположим, что количество периодов на 10 делений равно 12 при скорости равзертки 1 мкс/деление.

количество периодов
$$\frac{12}{10 \times \text{время/деление}} = \frac{12}{10 \times 10^{-6}} = 1,2 \text{ MFц}$$

7. ОПИСАНИЕ МЕХАНИЧЕСКОЙ КОНСТРУКЦИИ

Осциллоскоп ВМ 566А имеет вертикальное решение передней панели. В центре передней панели расположена электронно-лучевая трубка с соосветствующими элементами управления. Налево установлен усилитель вертикального отклонения, направо - генератор развертки. Внутренние пространства отделены перегородками, которые обеспечивают электрическую экранизацию схем и одновременно являются несущими элементами в передней части ящика. Передняя часть окончена на уровне отклоняющих пластин электронно-лучевой трубки поперечной перегородкой. Во второй части осциллоскопа расположены стабилизаторы и цепи источника ВН. Схема осциллоскопа выполнена на платах печатного монтажа за исключением цепей ВН, где из-за высокого напряжения использованы керамические планки. Умножитель ускоряющего напряжения залит изоляционным веществом, исключающим проникновение влаги в схему. Осциллоскоп сконструирован на базе обычных конструктивных элементов. Для переключения скорости развертки и переключения чувствительности вертикального отклонения использованы переключатели вращения, для остальных функций переключения использованы кнопки. С целью уменьшения температуры внутри прибора мощные транзисторы источников питания расположены вне на радиаторах. В пространстве усилителя вертикального отклонения распо-

on the graticule. The measured frequency can be cal-

culated according to the formula given below. Supposing the number of cycles which take up the length of 10 division lines is 12 at a sweep speed of 1 μ s/div., then the frequency can be calculated as follows:

Number of cycles $\frac{12}{10 \times \text{Setting of "TIME/DIV."}} = \frac{12}{10 \times 10^{-6}} = 1.2 \text{ MHz}$

7. DESCRIPTION OF THE MECHANICAL DESIGN

The BM 566A oscilloscope has its control panel arranged vertically. The centre of the front panel is taken up by the cathode ray tube and its pertaining controls. At the left is the vertical (Y) amplifier and at the right the time base. The individual sections of the instrument are mutually separated by integral partitions which serve as screening for their circuits and simultaneously as carriers in the front part of the instrument cabinet. This front part terminates at the level of the deflection plates of the CRT in a transverse plate. In the second part of the oscilloscope are mounted the circuits with the stabilizers and those of the HV supply. The circuitry of the oscilloscope is formed by printed circuit boards; exceptions are the HV circuits which employ ceramic strips in order to meet the conditions of high voltage. The multiplier of the accelerating voltage is moulded in an insulating compound so as to prevent the penetration of moisture into its circuits. Conventional constructional elements are emploeyed throughout in the oscilloscope. Rotary selectors and switches are employed for setting the speed of the time base and the sensitivity of the vertical amplifier. Push-button controls are used for all the other switching operations.

In order to reduce the temperature inside the instrument, the power transistors of its power supplies an mounted on their heat sinks on the back of the instrument. In the space for the vertical amplifier are mounted all the circuits of this amplifier except those o pod obrazovkou mezi vinutým zpožďovacím kabelem. Vnitřní prostor časové základny je rozdělen přepážkou na dvě části. V přední části jsou umístěny obvody tvarovačů a tlačítka sloužící k volbě synchronizace a druhů provozu časových základen. V zadní části jsou pak umístěny obvody rozmítacích generátorů, přepínače pro volbu rychlostí časových základen a deska řídicího obvodu. Obvody rozmítacích generátorů jsou natočeny tak, aby součásti byly přístupné z vnější strany. Dostavovací prvky jsou přístupné po demontáži krytů přístroje. Veškeré ovládací prvky a vstupy externí synchronizace jsou umístěny na předním panelu, výstupy pomocných průběhů na zadní straně přístroje.

Upozornění

Přístroj obsahuje drahéí kovy v těchto dílech:

 1AK 537 02 - S2
 Plech Ag80Cu 0,4 mm
 8,7 g

 1AK 537 03 - S102
 Plech Ag80Cu 0,4 mm
 8,7 g

 1AN 558 72 - S11
 Plech Ag80Cu 0,4 mm
 18 g

 1AN 558 73 - S10
 Plech Ag80Cu 0,4 mm
 13,5 g

8. PODROBNÝ POPIS ZAPOJENÍ

8.1. Napájecí zdroje NN

V primárním obvodu síťového transformátoru je zařazen tlačítkový vypínač, síťová pojistka, volič napětí a síťový filtr. Držák pojistky a síťový volič jsou umístě-

ложены цепи усилителя вертикального отклонения за исключением оконечного каскада. Соединение между обеими частями осуществляется с помощью кабеля задержки. Настроечные элементы доступны после демонтажа крышек прибора. Цепи усилителя синхронизации расположены в пространстве под электроннолучевой трубкой между витками кабеля задержки. Внутреннее пространство генератора развертки разделяется перегородкой на две части. В передней части расположены схемы формирования и кнопки, служащие для выбора синхронизации и режимов работы генераторов развертки. В задней части расположены схемы генераторов равзертки, переключатели скоростей развертки и плата управляющей схемы. Схемы генераторов развертки повернуты так, чтобы элементы были доступны из вне. Установочные элементы доступны после демонтажа крышек прибора. Все элементы управления и входы внешней синхронизации расположены на передней панели, выходы вспомогательных сигналов - на задней панели.

the final stage which is connected by means of the delay cable line. All the adjusting controls become accessible after taking off the cover plates of the oscilloscope. The circuits of the synchronizing amplifier are in the space below the CRT, where the delay cable is situated. The space for the time bases is splitup into two parts by a partition; in the front part are the circuits of the shapers as well as the push-button for selecting the mode of synchronization and that of the operation of the time bases: in the back part are the circuits of the sweep generators, the switches for time base speed selection, and the board of the control circuit. The circuits of the sweep generators are mounted in such a manner that all their components are easily accessible from the outside. Also the adiusting controls of these circuits become accessible after taking off the cover plates of the oscilloscope. All the controls of the oscilloscope as well as the input connectors for external synchronization are on the front panel; the outputs of the auxiliary waveforms are on the back panel of the instrument.

Примечание

Прибор содержит благородные металлы в следующих частях: 1AK 537 02 — S2 Лист Ag80Cu 0,4 мм 8,7 г 1AK 537 03 — S102 Лист Ag80Cu 0,4 мм 8,7 г

1AN 558 72 — S11 Лист Ag80Cu 0,4 мм 18 г 1AN 558 73 — S10 Лист Ag80Cu 0,4 мм 13,5 г

8. ПОДРОБНОЕ ОПИСАНИЕ СХЕМЫ

8.1. Источники питания низкого напряжения

В первичной цепи сетевого трансформатора включен кнопочный выключатель, сетевой предохранитель, переключатель напряжения и сетевой фильтр. Держатель предохранителя

Note

The following parts of the instrument contain precious metals:

1AK 537 02 - S2	Metal sheet Ag80Cu 0.4 mm	8.7 a
1AK 537 03 - S102	Metal sheet Ag80Cu 0.4 mm	8.7 a
1AN 558 72 - S11	Metal sheet Ag80Cu 0.4 mm	18 a
1AN 558 73 - S10	Metal sheet Ag80Cu 0.4 mm	13.5 g

8. DETAILED DESCRIPTION OF THE CIRCUITRY

8.1. Low-voltage supplies

In the primary circuit of the mains transformer are: Push-button mains switch, mains fuse, mains voltage selector, and mains filter. The fuse holder and the voltage selector are on the back panel of the oscillony na zadním panelu. Pevně připojená síťová šňůra je v transportním stavu přístroje navinuta kolem nožek umístěných na zadním panelu.

Jádro transformátoru tvoří 2 ks vinutých ortopermových jader. Vývody kotoučových vinutí jsou vyvedeny na deskách provedených technikou plošných spojů a upevněných na kostrách cívek. Na těchto deskách jsou též umístěny usměrňovací prvky zdrojů a část filtračních elektrolytů. Usměrněná napětí jsou svazenkou propojena na filtrační elektrolyty a desku stabilizátoru. Výkonové regulační tranzistory jsou umístěny na chladicích žebrech na zadním panelu přístroje.

V přístroji použitá řada stabilizovaných napětí –12 V, +5 V, +48 V, +12 V a +80 V – je vytvořena jako závislý systém zdrojů. Základní zdroj +12 V je osazen monolytickým integrovaným stabilizátorem MAA 7812 (IO 20), jenž má ve smyčce zapojen operační zesilovač MÁA 741 (IO 80). Toto zapojení umožňuje využití vysoké stability integrovaného stabilizátoru s možností dostavení výstupního napětí, jež slouží zároveň jako referenční napětí pro ostatní stabilizátory. Tři závislé zdroje jsou obvyklé koncepce. Jako diferenčního zesilovače odchylky je zde použito integrovaného operačního zesilovače MAA 741, na jehož vstupy jsou z přesných děličů přiváděna napětí z referenčního zdroje a vlastního stabilizátoru. Zesíleným odchylkovým napětím je pak buzen regulační stupeň v Darlingtonově zapojení.

Všechny stabilizátory jsou jištěny elektronickou pojistkou proti proudovému přetížení, která při přetížení, resp. zkratu omezuje výstupní napětí i proud tak, aby ztrátový výkon na regulačním tranzistoru nepřekročil dovolenou hodnotu. Systém stabilizovaných zdrojů

и переключатель напряжения сети установлены на задней панели. Фиксированный сетевой шнур в транспортном состоянии прибора намотан на ножках задней панели.

Магнитная цепь трансформатора образована двумя сердечниками из материала ортоперм. Выводы дисковых обмоток установлены на платах печатного монтажа и крепятся на каркасах катушек. На этих пластинах также расположены выпрямительные элементы источников питания и часть электролитических конденсаторов фильтрации. Выпрямленные напряжения с помощью жгута подаются на электролиты фильтрации и на плату стабилизатора. Силовые регулировочные транзисторы установлены на радиаторах на задней панели прибора.

В приборе использован ряд стабилизированных напряжений -12 B, +5 B, +48 B, +12 B, +80 B по системе зависящих друг от друга источников питания. Основной источник +12 В собран на монолитической интегральной микросхеме стабилизатора МАА 7812 (Ю 20), в цепь которого включен операционный усилитель МАА 741 (Ю 80). Эта схема дает возможность использовать высокую стабильность интегрального стабилизатора с возможностью установки выходного напряжения, являющегося опорным напряжением для остальных стабилиизаторов. Три зависимых источника имеют обычную схему. В качестве дифференциального усилителя отклонения использован интегральный операционный усилитель МАА 741, на входы которого подаются напряжения от источника опорного напряжения через точные делители, а также напряжение собственного стабилизатора. Усиленным напряжением отклонения возбуждается каскад регулирования, собранный по схеме Дарлингтона.

Все стабилизаторы оснащены электронным предохранителем для защиты от токовой перегрузки, который при перегрузке или коротком замыкании ограничивает выходное напряжение и ток так, чтобы мощность потерь, рассеиваемая регулировочным транзистором не вышла за

scope. When the instrument is packed for transport, the mains cord which is attached firmly to it is wound on four pegs fixed to the back panel.

The core of the mains transformer is formed by two wound orthoperm cores. The ends of the disc-shaped coils are brought out to printed circuit boards attached to the coil formers; these printed circuit boards carry also the components of the rectifiers and some of the filtering electrolytic capacitors. The rectified voltages are connected to the electrolytic capacitors and to the board of the stabilizers via conductors in a jointing sleeve. The power control transistors are mounted on their heat sinks on the back panel of the instrument.

The BM 566 oscilloscope employs several stabilized DC voltages, i.e. -12 V, +5 V, +48 V, +12 V and +80 V, which are produced by mutually dependent sources. The basic source of +12 V employs a monolithic integrated stabilizer MAA 7812 (IO 20) which has an operational amplifier MAA 741 (IO 80) connected in its feedback loop. This connection enables utilization of the high stability of the integrated stabilizer and offers facility for adjustment of the output voltage which serves simultaneously as a reference voltage for the other stabilizers. Three mutually dependent DC sources are of routine design. As differential deviation amplifier is employed an integrated operational amplifier MAA 741, to the inputs of which are applied voltages derived from precious dividers of the reference supply and from the stabilizer itself. The amplified deviation voltage drives the control stage in Darlington connection.

All the stabilizers are safeguarded by electronic protective devices which, in the case of a current overload or short circuit, limit the output voltage and current so that the power dissipated by the control transistor does not exceed the permissible value. The system of the stabilized DC supplies is designed so that when je řešen tak, že po nastavení zdroje +12 V jsou napětí ostatních stabilizátorů v požadovaných tolerancích.

Do série se stabilizátorem +80 V je zapojen nestabilizovaný zdroj +40 V. Vzniklým napětím +120 V je napájen horizontální a jasový zesilovač. Nestabilizovaného napájecího napětí +20 V stabilizátoru +12 V je použito pro napájení oscilátoru zdroje vysokého napětí a nestabilizovaného napájecího napětí +10 V stabilizátoru +5 V pro napájení osvětlovacích žárovek rastru obrazovky.

8.2. Vysokonapěťový zdroj

Zdrojem napájecích napětí pro obrazovku 11L01011 je výkonový oscilátor E200 pracující s transformátorem TR na kmitočtu asi 22 kHz. Na sekundární straně transformátoru se získávají čtyři napětí.

Pomocné napětí 2 kV pro napájení řídicí mřížky obrazovky je získáno jednocestným usměrněním (křemíkovým usměrňovačem E201) střídavého napětí z vinutí s malou kapacitou.

Potenciometrem R200 je nastaven maximální katodový proud obrazovky. Kladný konec tohoto zdroje je připojen na výstup Z zesilovače, takže tento zdroj tvoří stejnosměrnou vazbu pro signály jasové modulace obrazovky.

Anodové napětí –1950 V je získáno jednocestným usměrněním napětí z odbočky druhého sekundárního vinutí usměrňovačem E202. Toto napětí napájí katodu obrazovky a je z něho odvozeno řídicí napětí pro stabilizační smyčku VN zdroje. Urychlovací napětí 12 kV se získává ztrojovačem osazeným допустимые пределы. Система стабилизированных источников питания выполнена так, что после регулировки источника +12 В напряжения остальных стабилизаторов находятся в допустимых пределах.

Последовательно со стабилизатором +80 В включен нестабилизированный источник +40 В. Результирующее напряжение +120 В применяется для питания усилителя горизонтального отклонения и усилителя подсветки. Нестабилизированное напряжение питания +20 В стабилизатора +12 В используется для питания автогенератора источника ВН и нестабилизированное напряжение питания +10 В стабилизатора +5 В служит также для питания ламп освещения растра электронно-лучевой трубки.

8.2. Источник высокого напряжения

Источником напряжений питания электроннолучевой трубки 11Л0101И является мощный автогенератор Е200 с трансформатором TR, работающим на частоте прибл. 22 кГц. Со вторичной обмотки трансформатора снимаются четыре напряжения.

Вспомогательное напряжение 2 кВ используется для питания сетки электронно-лучевой трубки и получается путем однополупериодного выпрямления переменного напряжения, снимаемого с обмотки малой емкостью при использовании кремниевого выпрямителя E201.

Потенциометром R200 устанавливается максимальный ток катода трубки. Положительный полюс этого источника подключен к выходу усилителя Z, в результате чего этот источник имеет постоянную связь для сигналов модуляции луча трубки по яркости.

Анодное напряжение — 1950 В получается путем однополупериодного выпрямления напряжения, снимаемого с вывода второй вторичной обмотки при использовании выпрямителя E202. Это напряжение служит для питания катода трубки и на его основании вырабатывается управляющее напряжение для петли стабилизации источника ВН. Ускоряющее наthe voltage of the +12 V source is adjusted correctly, then also the voltages of all the other stabilizers are within the permissible tolerances.

An unstabilized source of ± 40 V is connected in series with the ± 80 V stabilizer. The produced voltage of ± 120 V is used for powering the horizontal and brightness amplifiers. The unstabilized powering voltage of ± 20 V for the ± 12 V stabilizer is employed for powering the oscillator of the HV supply; the unstabilized voltage of ± 10 V for the ± 5 V stabilizer is employed as power supply for the lamps illuminating the graticule of the CRT.

8.2. High-voltage supply

A power oscillator E200, which operates together with the transformer TR at a frequency of approximately 22 kHz, serves as a source of the powering voltages for the CRT of the 11L01011 type. Four voltages are derived from the secondary side of the transformer.

An auxiliary voltage of 2 kV powering the control grid of the CRT is obtained by half-wave rectification (by silicon rectifier E201) of the AC voltage supplied by a low-capacitance secondary coil.

Maximum cathode current of the CRT is set by means of the potentiometer R200. The positive pole of this supply is connected to the output of the Z-amplifier, so that this supply forms a DC coupling for the signals for brightness modulation of the CRT.

The anode voltage of -1950 V is obtained by halfwave rectification (by E202) of the voltage drawn from the tap of the second secondary winding. This voltage is applied to the cathode of the CRT and from it is derived the control voltage for the stabilizing loop of the HV supply. The accelerating voltage of 12 kV is obtained from a trippler which employs the rectifiers usměrňovači E203–E205. Jednotka ztrojovače je zalita silikonovou zalévací hmotou.

Změna anodového napětí je přivedena na bázi tranzistoru E141 napájeného zároveň ze zdroje referenčního napětí a proměnného napětí potenciometru R140 – prvku pro nastavení výstupního napětí. Signál zesílený tranzistorem E141 řídí přes emitorový sledovač E143 stejnosměrnou úroveň napětí na bázi tranzistoru E145 a tím velikost oscilačního napětí. Výkonový tranzistor je jištěn proti poškození tavnou pojistkou P140 umístěnou uvnitř přístroje na desce regulační smyčky zdroje.

Potenciometr R222 zapojený v děliči mezi zdroj anodového napětí obrazovky a zem umožňuje s potenciometrem R232 pro korekci astigmatismu optimální zaostření stopy na stínítku obrazovky. Potenciometrem R234 lze korigovat soudkovité eventuálně poduškovité zkreslení. Vzhledem k tomu, že použitá hranatá obrazovka má vnitřní rastr, provádí se korekce vychylovacích směrů paprsku do souhlasu s vnitřním rastrem změnou mangetického pole dvou korekčních cívek umístěných uvnitř stinicího krytu obrazovky pomocí potenciometrů R228 a R231.

8.3. Zesilovač jasové modulace obrazovky (Zesilovač Z)

Na vstup zesilovače Z jsou připojeny všechny obvody ovlivňující jas obrazovky. Je to přisvětlení stopy časovou základnou, zhasínání přechodů při přepínání dvoukanálového zesilovače a vnější vstup intenzitní modulace paprsku. Mimo to je změnou ss úrovně na

пряжение 12 кВ получается с помощью утроителя напряжения, собранного на выпрямителях E203—E205. Блок утроителя залит силиконовым заливочным веществом.

Изменение анодного напряжения подается на базу транзистора E141, питаемого одновременно от источника опорного напряжения, снимаемого с потенциометра R140, служащего для установки выходного напряжения. Сигнал, усиленный транзистором E141, управляет через эмиттерный повторитель E143 уровнем постоянного напряжения на базе транзистора E145, в результате чего регулируется уровень напряжения колебаний. Мощный транзистор защищен от выхода из строя плавким предохранителем P140, установленным внутри прибора на плате петли регулировки источника.

Потенциометр R222 включенный в схему делителя между источником анодного напряжения электронно-лучевой трубки и землей, вместе с потенциометром R232 предназначен для коррекции астигматизма и оптимальной фокусировки пятна на экране трубки. Потенциометром R234 можно корректировать искажения типа бочка или типа подушка. Ввиду того, что используемая прямоугольная трубка оснащена внутренним растром, осуществляется коррекция направлений отклонения луча в соответствии с направленим внутреннего растра путем изменения магнитного поля двух корректирующих катушек, установленных внутри экрана трубки с помощью потенциометров R228 и R231.

8.3. Усилитель модуляции луча трубки по яркости (усилитель Z)

На вход усилителя Z подаются сигналы всех цепей, оказывающих влияние на яркость трубки. Это — подсветка пятна генератором развертки, гашение луча при коммутации двухканального усилителя и внешний вход модуляции луча по яркости. Кроме того, путем изменения уровня постоянного тока на входе усилителя устана-

E203 to E205. The unit of this trippler is moulded in a silicon compound.

The changes in the anode voltage are applied to the base of transistor E141 which is powered simultaneously from the the reference voltage source and obtains a variable voltage drawn from potentiometer R140 which serves for setting the output voltage. The signal amplified by transistor E141 controls the DC voltage level on the base of transistor E145 via emitter follower E143, and thus determines the magnitude of the oscillating voltage. The power transistor is safeguarded against damage by a fuse P140 which is inside the instrument on the board carrying the control loop of the power supply.

The potentiometer R222, which is inserted in the divider between the anode voltage supply for the CRI and earth, serves together with potentiometer R232 for astigmatism correction, for adjusting optimum focusing of the trace on the CRT screen. Barrel or cushion distortion can be corrected by means of potentiometer R234. As the employed rectangular CRT has an internal graticule, the directions of beam deflection are corrected to tally with this internal graticule by controlling the magnetic field (by potentiometers R228 and R231 of two correcting coils situated inside the screening cover of the CRT.

8.3. Brightness modulation amplifier (Z-amplifier)

All the circuits which have an influence on the bright ness of the CRT are connected to the input of the Z-amplifier; these circuits are for increasing the brightness of the trace by time base B, blanking the transitions during switching by the double-channe amplifier, and for external beam modulation. By alter ing the DC level on the input of this amplifier, als

vstup zesilovače nastavována základní úroveň jasu při provozu časové základny i horizontálního zesilovače. Vstupní proudy se sčítají na nízké impedanci emitoru vstupního tranzistoru E161 pracujícího v zapojení s uzemněnou bází. Výstupní signál stupně se přivádí přes emitorový sledovač E163 na vstup komplementárního napěťového zpětnovazebního zesilovače E164 a E165. Výstupní změna napětí je přes mřížkový zdroi vn přivedena na řídicí mřížku obrazovky. Frekvenčně závislá negativní zpětná vazba zapoiená z kolektorů E164 a E165 na bázi E163 dává zesilovač se stálým ziskem. Proměnnými kapacitami C164 a C165 zapojenými ve smyčce zpětné vazby se dostavuje kmitočtová charakteristika zesilovače.

8.4. Vertiální zesilovač

Dvoukanálový zesilovač tvoří následující funkční celky:

- 1. Vstupní děliče
- 2. Zesilovací část
- 3. Řídicí obvody
- 4. Synchronizační zesilovač

8.4.1. Vstupní děliče

Vstupní děliče mají 9 poloh a dovolují nastavení některé z těchto citlivostí zesilovače:

0,01 - 0,02 - 0,05 - 0,1 - 0,2 - 0,5 - 1 - 2 - 0,05 - 0,- 5 V/cm.

Konstrukčně je vstupní dělič každého kanálu řešen jako kapacitně vyrovnaný dělič s konstantní vstupní impedancí 1 MΩ paralelně s kapacitou asi 25 pF. Tyto vstupní děliče mají tři dělicí poměry, a to: 1 : 1, 1 : 10, 1:100.

вливается основной уровень яркости при работе генератора развертки и усилителя горизонтального отклонения. Входные токи суммируются на малом сопротивлении входного транзистора R161, работающего по схеме с заземленной базой. Выходной сигнал каскада подается через эмиттерный повторитель Е163 на вход комплементарного усилителя напряжения обратной связи Е164 и Е165. Изменение выходного напряжения через источник ВН питания управляющей сетки подается на управляющий электрод трубки. Частотно-зависимая отрицательная обратная связь между коллектором Е164 и Е165 и базой Е163 обеспечивает постоянство коэффициента усиления усилителя. С помощью подстроечных конденсаторов С164 и С165, включенных в цепь обратной связи, устанавливается частотная характеристика усилителя.

8.4. Усилитель вертикального отклонения

Двухканальный усилитель состоит из следующих функциональных частей:

- 1. входные делители
- 2. тракт усиления
- 3. схемы управления
- 4. усилитель синхронизации

8.4.1. Входные делители

Входные делители имеют 9 положений и дают возможность установить одно из следующих значений чувствительности усилителя:

0,01 - 0,02 - 0,05 - 0,1 - 0,2 - 0,5 - 1 - 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5 V/cm.— 2 — 5 В/см.

С конструктивной точки зрения входной делитель каждого канала выполнен в качестве делителя с емкостной компенсацией, обладающего постоянным входным сопротивлением 1 МОм с параллельной емкостью порядка 25 пФ. Эти входные делители обладают тремя значениями коэффициента деления, а именно: 1 : 1, 1 : 10, 1:100.

the basic brightness is adjusted during the operation of the time base and of the horizontal amplifier.

The input currents are added on low impedance of the emitter of input transistor E161 which operates in earthed base connection. The output signal of this stage is applied to the input of the complementary voltage feedback amplifier formed by E164 and E165, via emitter follower E163. The output voltage variations are applied to the control grid of the CAT via the grid HV supply. The frequency-dependent inverse feedback applied to the base of E163 from the collectors of E164 and E165 ensures constant gain amplification. The frequency response of the amplifier is adjusted by means of variable capacitors C164 and C165 which are inserted in the feedback loop.

8.4. Vertical amplifier

•

This double-channel amplifier consists of the following functional units.

- 1. Input attenuators
- 2. Amplifying section
- 3. Control circuits
- 4. Synchronizing amplifier

8.4.1. Input attenuators

Each input attenuators has 9 positions and serves for setting one of the following sensitivity steps of the amplifier:

The input attenuator of either channel is a capacitance-compensated divider of a constant input impedance of 1 M Ω in parallel with a capacitance of approximately 25 pF. Each input divider has three dividing ratios, as follows:

1:1,1:10 and 1:100.

Pro dosažení vysoké vstupní impedance je jako vstupní stupeň užita v každém kanálu dvojice FET sledovačů – tranzistory E3 a E4 respektive E203 a E204. Diody E1, E2 nebo E201, E202 slouží k ochraně těchto sledovačů před napětovým přetížením. Další stupeň za vstupním sledovačem je emitorový sledovač E5 resp. E205. Signál z emitorového sledovače je zesilován v dalším stupni E7 resp. E207. Tento stupeň má v emitoru zapojen potenciometr R24 resp. R224 sloužící k dostavení nf citlivosti a korekční člen R25, C14 nebo R225, C214 pro nastavení vf citlivosti. Výstupní kvazikomplementární sledovač E15, E16 (E215, E216) je buzen z invertujícího stupně E11 (E211). Dioda E13 (E213) slouží k teplotní kompenzaci koncového sledovače. Pro zajištění stabilního nulového výstupního napětí je v zesilovači použita záporná zpětná vazba, jejíž součástí je operační zesilovač IO 1 (IO 201), emitorový sledovač E6 (E206) a řízený stupeň E8 (E208). Na jeden ze vstupů operačního zesilovače je přes odpor R37 (R237) přivedeno podělené výstupní napětí a toto je porovnáno na jeho druhém vstupu přes odpor R12 (R212) s napětím odebíraným ze vstupních emitorových sledovačů. Zesílení celého zesilovače včetně zpětné vazby je rovno jedné. Potenciometr R5 resp. R205 slouží k nastavení stejnosměrné citlivosti, proměnná kapacita C2 resp. C202 k dostavení frekvenční charakteristiky operačního zesilovače. Napětí z výstupu operačního zesilovače řídí proud tranzistorem E8 resp. E208 a tím přes další zesilovací stupně udržuje konstantní napětí na výstupu. Za výstupním sledováčem následuje nízkoimpedanční dělič 1 : 1, 1 : 2,

8.4.2. Тракт усиления

Для обеспечения высокого входного сопротивления в качестве первого каскада каждого канала использована пара повторителей на полевых транзисторах ЕЗ и Е4 или Е203, Е204. Диоды Е1, Е2 или Е201, Е202 служат для защиты этих усилителей от перегрузки напряжением. Следующий каскад после входного повторителя — это эмиттерный повторитель Е5 или Е205. Сигнал с эмиттерного повторителя в последовательном каскаде Е7 или Е207. В цепи эмиттера этого каскада включен потенциометр R24 или R224, служащий для установки чувствительности в области низких частот, и корректирующая цепочка R25, C14 или R225, C214 для установки чувствительности в области высших частот. Выходной квазикомплементарный повторитель Е15, Е16 (Е215, Е216) получает возбуждение от инвертирующего каскада Е11 (Е211). Диод Е13 (Е213) служит для температурной компенсации оконечного повторителя. Для обеспечения стабильного нулевого выходного напряжения в усилителе предусмотрена отрицательная обратная связь, частью которой является операционный усилитель Ю 1 (Ю 201), эмиттерный повторитель Е6 (Е206) и управляемый каскад Е8 (Е208). На один из входов операционного усилителя через сопротивление R37 (R237) подается деленное выходное напряжение, которое сравнивается с напряжением, снимаемым со входных эмиттерных повторителей и подаваемым на второй вход усилителя через сопротивление R12 (R212). Коэффициент усиления всего усилителя, включая действие цепи обратной связи, равен единице. Потенциометр R5 или R205 служит для установки чувствительности по постоянному току, подстроечный конденсатор С2 или С202 предназначен для установки частотной характеристики операционного усилителя. Напряжение с выхода операционного усилителя управляет током транзистора Е8 или Е208, в результате чего через следующие каскады усиления под-

8.4.2. Amplifiyng section

In order to attain high input impedance, each channel employs a pair of FET followers (transistors E3 and E4, or E203 and E204) in the input stage. The diodes E1, E2, or E201, E202 serve for protecting these followers against voltage overload. The stage after the input follower is an emitter follower E5, or E205. The signal produced by the emitter follower is amplified in a further stage E7, or E207, which has in the emitter circuit a potentiometer R24, or R224, for adjusting the AF sensitivity, and a correcting network R25, C14, or R225, C214, for adjusting the RF sensitivity. The output quasi-complementary follower E15, E16 (E215, E216) is driven by the stage E11 (E211). Diode E13 (E213) serves for temperature compensation of the final follower. In order to ensure stable zero output voltage, the amplifier employs an inverse feedback loop formed by operational amplifier IO 1 (IO 201), emitter follower E6 (E206), and a control stage E8 (E208). A part of the output voltage is applied to one of the inputs of the operational amplifier via resistor R37 (R237); on the other input, this partial voltage is compared with the voltage taken from the input emitter follower via R12 (R212). The gain of the whole amplifier, including the feedback, is 1.

amplifier, including the recubacity is the The potentiometer R5 (R205) serves for setting the DC sensitivity, the variable capacitor C2 (C202) for adjusting the frequency response of the operational amplifier. The output voltage of the operational amplifier controls the current flowing through tranzistor E8 (E208) and thus, with the aid of further amplifying stages, maintains constant output voltage. A low-impedance attenuator 1:1, 1:2, 1:5 follows after the output follower. The potentiometer R35 (R135) serves 1 : 5. Potenciometr R35 resp. R135 slouží ke stejnosměrnému vyvážení této nesymetrické části tak, aby při přepínání děliče nedocházelo k nežádoucímu posuvu po stínítku.

Signál z nízkoimpedančního děliče je přiveden na emitorově vázaný invertor v kaskodovém zapojení, E51, E52 a E55, E56 resp. E251, E252 a E255, E256. Potenciometr R36 nebo R136 slouží k plynulé změně citlivosti. Těmito potenciometry je ovládáno napětí na diodách E53, E54 resp. E253, E254, které vytvářejí plynule proměnný dělič s odpory R59, R60 resp. R259 a R260. Potenciometr R53 resp. R253 slouží k potlačení nežádoucího posuvu stopy po stínítku při protáčení potenciometru plynulé změny citlivosti. Pro dosažení požadovaných přenosových vlastností je mezi emitory invertoru zařazen korekční obvod. Kmitočtově závislá záporná zpětná vazba zajišťuje rozšíření přenosového pásma.

Dalším stupněm je kaskoda tvořená E60, E61 a E62, E63 resp. E260, E262 (E264) a E261, E263 (E265); čtveřice tranzistorů horní části kaskody v kanálu B slouží k přepinání polarity tohoto kanálu.

Podle toho, jak je přepnuto tlačítko S3.3 vedou buďto tranzistory E262 a E263 nebo E264 a E265. Rovněž v tomto stupni je mezi emitory zařazen korekční obvod. Potenciometr R286 slouží k potlačení nežádoucího posuvu stopy při přepínání polarity kanálu B. Poslední stupeň před společnou koncovou částí je tvořen tranzistory E64, E65 resp. E266, E267. V kolektorech tohoto stupně je umístěn potenciometr posuvu R38, R133 a čtveřice diod E66, E67, E68, E69 resp. E268, E269, E270, E271 sloužícím k ovládání druhu činnosti.

Potenciometry R37 a R137 jsou vyvedeny na panel a slouží k dostavení kalibrované citlivosti kanálu

держивается постоянное напряжение на выходе. После выходного повторителя следует низкоомный делитель 1: 1, 1: 2, 1: 5. Потенциометр R35 или R135 служит для балансировки этой несимметричной части схемы по постоянному току для того, чтобы при переключении делителя не было нежелательного смещения пятна на экране. Сигнал низкоомного делителя подается на инвертор с эмиттерной связью, собранной по каскадной схеме E51. E52 и E55. E56 или E251. E252 и E255, E256. Потенциометр R36 или R136 служит для плавного изменения чувствительности. Этими потенциометрами изменяется напряжение на диодах E53, E54 или E253, Е254. которые создают плавный регулируемый делитель с сопротивлениями R59, R60 или R259. R260. Потенциометры R53 или R253 служат для подавления нежелательного смещения пятна на экране при вращении потенциометром плавной регулировки чувствительности. Для достижения требуемых передаточных параметров между эмиттерами инвертора включена корректирующая схема. Частотнозависимая отрицательная обратная связь обеспечивает расширение полосы пропускания.

Следующим каскадом является каскодная схема E60, E61 и E62, E63 или E260, E262 (E264) и E261, E263 (E265), причем четыре транзистора в верхней части каскодной схемы в канале В служат для переключения полярности этого канала.

В зависимости от положения кнопки S3.3 проводят транзисторы E262 и E263 или E264 и E265. Также в этом каскаде между эмиттерами включена корректирующая схема. Потенциометр R268 служит для подавления нежелательного смещения пятна при переключении полярности канала В. Последний каскад перед общим оконечным усилителем собран на транзисторах E64, E65 или E266, E267. В цепях коллекторов этого каскада установлен потенциометр смещения R38, R138 и четыре диода E66, E67, E68, E69 или E268, E269, E270, E271, предназначенные для управления режимом работы.

for DC balancing of this asymmetrical circuitry in order to prevent unwanted trace shift over the CRT screen when the setting of the attenuator is altered. The signal from the low-impedance attenuator is applied to the emitter-coupled inverter in cascode connection, E51, E52 and E55, E56 (E251, E252 and E255, E256). The potentiometer R36 or R136 serves for continuous sensitivity control. These potentiometers alter the voltage on the diodes E53, E54, or E253, E254, which together with the resistors R59. R60, or R259m, R269, form a continuously adjustable divider. The potentiometer R53 or R253 serves for suppressing unwanted trace drift over the CRT screen when the continuous sensitivity control potentiometer is operated. In order to attain the required transfer properties. a correcting circuits is inserted between the emitters of the inverter. The transfer band is extended by the application of frequency-dependent inverse feedback.

The next stage is a cascode formed by E60, E61 and E62, E63, or by E260, E262 (E264) and E261, E263 (E265); the four transistors of the upper part of the cascode in channel B serve for switching-over the polarity of this channel.

Depending on the setting of the push-button switch S3.3, either the transistors E262 and E263, or E264 and E265, are conductive. Also this stage is provided with a correcting circuit inserted between the emitters. The potentiometer R286 suppresses unwanted drift of the trace when the polarity of channel B is altered.

The last stage in front of the common final section is formed by the transistors E 64, E65, or E266, E267. In the collector circuit of this stage is the shift control potentiometer R38 or R138 and a set of four diodes, i.e. E66, E67, E68, E69, or E268, E269, E270, E271, for controlling the mode of operation. A a kanálu B. Potenciometr R107 resp. R316 slouží k dostavení symetrie posuvu. Rovněž v tomto stupni je korekční obvod.

Společná koncová část je tvořena budičem linky E151, E152, který svým definovaným výstupním odporem zajišťuje dokonalé přizpůsobení zpožďovací linky ze strany vstupu a prvky L1 a R1 na straně výstupní. Za zpožďovací linkou následují dva zesilovací stupně v zapojení SE s korekčními obvody v emitorových větvích E1, E2 a E3, E4.

Tranzistory E5 a E6 jsou zapojeny jako emitorové sledovače a slouží k oddělení koncového zesilovače E51, E52 od předcházejících stupňů. Korekční prvky v emitorech slouží k dostavení požadovaných přenosových vlastností. Indukčnosti L51 a L52 a L66, L65 a potenciometr R67 slouží k impedančnímu přizpůsobení rozložených vychylovacích destiček obrazovky.

8.4.3. Řídicí obvody

Řídicí obvody jsou tvořeny dvěma integrovanými obvody IO 351 a IO 365 a spínacími stupni E369, E371 a E372. První integrovaný obvod vyrábí 500 kHz přepínací impulsy při stisknutí tlačítka S4.4 do polohy "CHOP." nebo slouží k tvarování přepínacího impulsu časové základny při stisknutí tlačítka S4.2 do polohy "ALT.". Současně z jednoho jeho výstupu je odebírán zhášecí impuls (při "CHOP.").

Hradlovací obvod určuje jednotlivé druhy činnosti dvoukanálového zesilovače. V klidovém stavu jsou všechny vstupy tohoto obvodu připojeny na +5 V.

Je-li stisknuto tlačítko "A", spojí se jeden vstup hradlového obvodu se zemí a na jeho výstupech je napě-

Потенциометры R37 и R137 управляются с панели и служат для установки калиброванной чувствительности канала A и канала B. Потенциометр R107 или R316 предназначен для установки симметрии смещения. Также в этом каскаде имеется корректирующая схема.

Общий оконечный усилитель образован возбудителем E151, E152, который благодаря своему определенному выходному сопротивлению обеспечивает доскональное согласование линии задержки на ее входе с элементами L1 и R1 на ее выходе. После линии задержки имеются два каскада усиления, собранные по схеме с общим эмиттером с корректирующими цепями в цепях эмиттера E1, E2 и E3, E4.

Транзисторы E5 и E6 включены по схеме эмиттерных повторителей и предназначены для развязки конечного усилителя E51, E52 и предшествующих каскадов. Корректирующие элементы в цепях эмиттеров служат для установки требуемой передаточной характеристики. Индуктивности L51 и L52, L66 и L65 и потенциометр R67 предназначены для согласования сопротивлений распределенной схемы отклоняющих катушек электронно-лучевой трубки.

8.4.3. Цепи управления

Цепи управления собраны на двух интегральных микросхемах Ю 351 и Ю 365 и ключевых каскадах E369, E371 и E372. Первая интегральная микросхема вырабатывает импульсы коммутации 500 кГц при нажатии кнопки S4.4 в положение ЧОП. или служит для формирования коммутирующего импульса генератора развертки при установке кнопки S4.2 в положение АЛТ. Одновременно от одного выхода схемы снимается гасящий импульс (в режиме ЧОП.). Вентильная схема определяет отдельные режимы работы двухканального усилителя. В состоянии покоя все входы этой схемы находятся на потенциале +5 В. При нажатии на кнопку «А» соединяется один вход вентильной схемы с землей и на его

The potentiometers R37 and R137 are mounted on the panel of the oscilloscope and serve for adjusting the calibrated sensitivity of channel A and channel. B respectively. The potentiometer R107 or R316 serves for adjusting the symmetry of the shift. Also this stage is provided with a correcting network.

The common final section is formed by the line driver E151, E152, which, by means of its defined output impedance, caters for perfect matching of the input side of the delay line at the output side, the components L1 and R1 serve for the same purpose. After the delay line follow two amplifying stages fitted with correcting networks in the emitter branches of E1, E2 and E3, E4.

The transistors E5 and E6 are connected as emitter followers and separate the final amplifier E51, E52 from the foregoing stages, Several correcting elements in the emitter circuits serve for adjusting the required transfer properties. The inductances L51, L52 and L66, L65, as well as the potentiometer R67, serve for impedance matching of the scattered deflection plates of the CRT.

8.4.3. Control circuits

These circuits are formed by two integrated circuits IO 351 and IO 365 and by the switching stages E369 E371 and E372. The first integrated circuit produces switching pulses of 500 kHz when the push-buttor selector S4.4 is set to the position "CHOP.", or se rves for shaping the switching pulse of the time base when the push-button selector S4.2 is set to the position "ALT.". Simultaneously, the blacking pulse (if the "CHOP." code) is drawn from the output of this in tegrated circuit. The individual modes of operation of the double-channel amplifier are determined by a gating circuit. In the quiescent state, all the inputs of this circuit are connected to +5 V. When the push-buttor "A" is depressed, one input of the gating circuit becomes earthed and the voltages 0 V and +5 V respective tí 0 V a 5 V. V případě stisknutého tlačítka "B" je tomu naopak. Napětí 0 V a 5 V je přes Zenerovy diody E367, E368 a E374, E375 přiváděno na spínací stupeň tvořený tranzistory E369 a E372.

Na kolektorech tohoto stupně je napětí +12 V nebo +20 V podle stisknutého tlačítka.

Tato napětí jsou přes oddělovací diody E370, E373 přivedena na klíčovací diody v zesilovací části. V případě stisknutého tlačítka "A" je napětí +12 V z kolektoru tranzistoru E369 přivedeno na klíčovací diody kanálu A. Diody E66 a E67 jsou v důsledku tohoto napětí zavřeny, přičemž diody E68 a E69 jsou otevřeny, takže signál prochází do koncové části zesilovače. Naopak diody E268 a E269 v kanálu B jsou v důsledku přivedeného napětí +20 V ze spínacího stupně E372 udržovány v otevřeném stavu a zkratují signál kanálu B. Navíc jsou diody E270 a E271 zavřeny a oddělují tak kanál B od dalších obvodů zesilovače.

Při stisknutí tlačítka B je funkce analogická, přičemž si oba výstupy hradlového obvodu i klíčovací diody vymění své úlohy.

Při stisknutí tlačítka "ALT." je impuls z hradlovacího obvodu přiveden na spínací tranzistory E369 a E372, které se střídavě otevírají a zavírají, čímž je zajištěno otevírání jednoho a zavírání druhého kanálu vždy po jednom odběhu časové základny.

Při stisknutém tlačítku "CHOP." je tomu obdobně, pouze přepínání nastává vždy po 2 µs.

Při stisknutém tlačítku A±B je sepnutím tranzistoru E371 zajištěno napětí +12 V na obou kolektorech E369 a E372 a tím je zajištěno současné otevření выходах имеется напряжение 0 В и 5 В. В случае нажатой кнопки «В» имеет место обратное положение. Напряжение 0 В и 5 В через стабилитроны Е367, Е368 и Е374, Е375 подаются на ключевой каскад, собранный на транзисторах Е369 и Е372. На коллекторах этого каскада имеется напряжение +12 В или +20 В в зависимости от нажатой кнопки.

Эти напряжения через разделительные диоды ЕЗ70, ЕЗ73 подаются на ключевые диоды тракта усиления. В случае нажатия на кнопку «А» напряжение +12 В с коллектора транзистора ЕЗ69 подается на ключевой диод канала А. Диоды Е67 и Е66 в результате наличия этого напряжения заперты, причем диоды Е68 и Е69 отперты и, следовательно, сигнал проходит в оконечный тракт усилителя. Наоборот, диоды Е268 и Е269 канала В в результате поданного напряжения +20 В от ключевого каскада Е372 поддерживаются в отпертом состоянии и шунтируют сигнал канала В. Кроме того, диоды Е270 и Е271 заперты и таким образом отделяют канал В от остальных частей схемы усилителя. При нажатии на кнопку В имеет место аналогичное положение, при котором оба выхода вентильной схемы и ключевые диоды играют обратную роль.

При нажатии на кнопку АЛТ. импульс вентильной схемы подается на ключевые транзисторы E369 и E372, которые попеременно отпираются и запираются, в результате чего обеспечивается отпирание одного и запирание второго каналов всегда после одного прямого хода развертки.

При нажатой кнопке ЧОП. имеет место аналогичное положение с той только разницей, что переключение осуществляется всегда после 2 мкс. При нажатой кнопке A±B отпирается транзистор E371 и в результате этого имеется напряжение +12 В на обоих коллекторах E369 и E372 и, следовательно, одновременно отперты оба канала. При нажатой кнопке X-Y имеет место аналогичное положение, как и при нажа-

velv are on the outputs. When the push-button "B" is depressed, the situation is the opposite. The voltage 0 V and +5 V pass to the switching stage formed by transistors E369 and E372, via Zener diodes E367, E368 and E374, E375. Depending on which pushbutton is depressed, a voltage of either +12 V or +20 V is on the collectors of this stage. These voltages are applied to keying diodes in the amplifying section via the separating diodes E370, E373. When push-button "A" is depressed, the voltage of +12 V, taken from the collector of transistors E369, is applied to the keving diodes of channel A. Due to this voltage, the diodes E66 and E67 are closed, whereas the diodes E68 and E69 are open; thus, the signal passes into the final section of the amplifier. On the other hand, due to the voltage of +20 V applied from the switching stage E372. The diodes E268 and E269 in channel B are kept in the open state and short-circuit the signal of channel B. Moreover, the diodes E270 and E271 are closed, thus separating channel B from the other circuits of the amplifier. When push-button "B" is depressed, the operation is

analogical; the tasks of the two outputs of the gating circuit aud those of the keying diodes are mutually interchanged.

When push-button "ALT." is depressed, the pulse from the gating circuit is applied to switching transistors E369 and E372 which open and close alternately, thus ensuring the opening of one channel and the closing of the other channel always after the termination of one sweep of the time base.

The situation is similar when the push-button "CHOP." is depressed, however the switching takes place always after the elapse of 2 μ s.

When the push-button " $A\pm B$ " is depressed, a voltage of +12 V is on the collectors of E369 and E372, due to the closing of transistors E371; thus, simultaneous opening of the two channels in ensured. obou kanálů. Při stisknutém tlačítku X–Y je funkce shodná s funkcí tlačítka "A", navíc zajistí tato funkce propojení vstupu B přes synchronizační zesilovač s horizontálním systémem, to znamená, že signál přiváděný do kanálu A je zobrazován v ose Y, signál přiváděný do kanálu B je zobrazován v ose X.

8.4.4. Synchronizační zesilovač

Synchronizační signál je odebírán jednak přes odporový dělič R164, R168 a R167, R169 z koncové části a přes emitorové sledovače E58 a E59 z kanálu A přes emitorové sledovače E258 a E259 v kanálu B. Tento signál je přiveden na kaskodový stupeň E61, E62, E1, E2, E21, E22 a E41, E42, jehož horní část je

společná. Diodová hradla E3, E4, E5, E6, E23, E24, E25, E26 a E43, E44, E45, E46 obdobně jako u hlavního zesilovače slouží k přepinání synchronizace A, B a A±B. Signál z této kaskody je dále zesilován dalším kaskodovým stupněm, jehož spodní část E63, E64 je symetrická, horní část E65 nesymetrická. Výstupní stupeň synchronizačního zesilovače E67, E68 je zapojen jako komplementární sledovač a jeho výstup je propojen přes koaxiální kabel se synchronizačním zesilovačem v časové základně.

8.5. Časová základna

8.5.1. Vstupní přepínač (1, 21 v blokovém schématu)

Je tvořen sestavou tlačítek S9.7 až 10 v základně A, S9.3 a 4 v základně B.

Pomocí tlačítek lze volit zdroj synchronizačního signálu buď z vertikálního zesilovače nebo z externího konektoru F7 (F6 v základně B). Tlačítkem S9.8 je možno zařadit do cesty signálu vazební kondenzátor

тии на кнопку «А», но, кроме того, в этом режиме соединен вход В через усилитель синхронизации с системой горизонтального отклонения. Это значит, что сигнал, подаваемый на вход канала А, изображается по оси Y, сигнал, подаваемый в канал В, изображается по оси X.

8.4.4. Усилитель синхронизации

Синхронизирующий сигнал снимается через делитель сопротивления R164, R168 и R167, R169 с оконечного тракта и через эмиттерные повторители E58 и E59 с канала А через эмиттерные повторители Е258, Е259 канала В. Этот сигнал подается на каскодную схему, верхняя часть которой является общей: Е61, Е62, Е1, Е2, Е21, . Е22 и Е41, Е42. Диодные вентили Е3, Е4, Е5, Е6, Е23, Е24, Е25, Е26 и Е43, Е44, Е45, Е46 аналогично главному усилителю служат для переключения синхронизации А, В и А±В. Сигнал с этой каскодной схемы далее усиливается последующим каскодным усилителем, нижняя часть которого Е63 и Е64 является симметричной, а верхняя часть - несимметричной. Выходной каскад усилителя синхронизации Е67, Е68 собран по схеме комплементарного повторителя и его выход соединен с помощью коаксиального кабеля с усилителем синхронизации генератора развертки.

8.5. Генератор равзертки

8.5.1. Входной переключатель (1, 21 — блок-схема)

Он образован системой кнопок S9.7—10 генератора A и S9.3 и 4 генератора B.

С помощью кнопок можно выбрать источник синхронизирующего сигнала, а именно: усилитель вертикального отклонения или сигнал от внешнего гнезда F7 (F6 в генераторе развертки В). Кнопкой S9.8 можно в путь сигнала ввести

When the push-button "X-Y" is depressed, the operation is the same as when push-button "A" is employed; moreover, this mode ensures connection of the input B to the horizontal system via the synchronizing amplifier, which means that the signal applied to channel A is displayed in the Y-axis, and the signal applied to channel B is displayed in the X-axis.

8.4.4. Synchronizing amplifier

The synchronizing signal is drawn from the final section (via a resistive divider formed by R164, R168 and R167, R169), as well as from channel A (via emitter followers E58 and E59), and from channel B (via emitter followers E258 and 259). This signal is applied to a cascode stage, E61, E62, E1, E2, E21, E22 and E41, E42 with common top part. The diode gates E3, E4, E5, E6, E23, E24, E25, E26 and E43, E44, E45, E46, similarly as in the main amplifier, serve for setting the mode of synchronization "A", "B", or "A±B". The signal from this cascode is amplified by a further cascode stage, the bottom part of which (formed by E63, E64) is symmetrical, and the top part of which (E65) is asymmetrical. The output stage E67, E68 of the synchronizing amplifier is connected as a complementary follower, the output of which is connected to the synchronizing amplifier in the time base via a coaxial cable.

8.5. Time base

8.5.1. Input switches (1, 21 in the block) diagram)

This assembly is formed by a set of push-button swith ches S9.7 to S9.10 in time base A and S9.3 and S9.4 in time base B.

By means of these push-button can be selected a source of the synchronizing signal either the vertica amplifier, or an external supply applied to the connec tor F7 (or F6 for time base B). The push-button S9. can be employed for inserting the capacitor C10 C101 (C1). Tlačítkem S9.9 lze zařadit do cesty dolnofrekvenční propust, tvořenou R109, R110 a vstupní kapacitou zesilovače. Při stisknutém tlačítku S9.10 je zařazena hornofrekvenční propust C102–R108. Současným stisknutím tlačítek S9.9, S9.10 se na vstup zesilovače A přivádí sinusový signál ze sítového transformátoru přes filtr R111, C103. Zároveň je zablokována automatika základny A.

8.5.2. Synchronizační zesilovač (2, 22)

Zapojení zesilovačů v základně A i B je zcela shodné. Vstupní signál je přiváděn na řídicí elektrodu vstupního, polem řízeného tranzistoru E102 (E2) přes ochranný člen R112, E101, (R7, E1). Vstupní impedance je určena odporem R113 (R6) – 1 M Ω . Z emitoru vstupního tranzistoru je přes sledovač E103 (E3) řízena jedna z bází invertoru E105 (E5), E106 (E6). Na druhou bázi je přes sledovač E104 (E4) přiváděno nastavitelné stejnosměrné napětí z potenciometru ÚROVEŇ. Potenciometrem R124 (R18) lze dostavit základní symetrii zesilovače.

Symetrickým signálem na kolektorech tranzistorů je proudově buzena buď dvojice tranzistorů E107, E110 (E7, E10) nebo E108 a E109 (E8, E9) při změně polarity tlačítkem +/-. Zvolená dvojice tranzistorů pracuje jako stupeň se společnou bází. Napětí bází jedné dvojice je určeno děličem R144, R145 (R37, R42), u druhé R136, R137 (R30, R31). Spojením odporu R142 (R32), R135 (R29) s kostrou je otvírána jedna nebo druhá dvojice tranzistorů.

Pracovní odpory tohoto stupně jsou R149 a R150 (R43, R44).

конденсатор связи С101 (С1). Кнопкой S9.9 можно в путь сигнала включить фильтр нижних частот, образованный R109, R110 и входной емкостью усилителя. При нажатой кнопке S9.10 включен фильтр верхних частот C102—R108. При одновременном нажатии на кнопки S9.9 и S9.10 на вход усилителя А подается синусоидальный сигнал от сетевого трансформатора через фильтр R111, C103. Одновременно при этом заблокирована автоматика генератора развертки А.

8.5.2. Усилитель синхронизации (2, 22)

Схема усилителей синхронизации генераторов развертки А и В совершенно одинакова. Входной сигнал подается на управляющий электрод входного полевого транзистора Е102 (Е2) через защитную схему R112, E101 (R7, E1). Входное сопротивление определяется сопротивлением R113 (R6) — 1 МОм. С эмиттера входного транзистора через повторитель Е103 (Е3) осуществляется управление одной из баз инвертора E105 (E5), E106 (E6). На вторую базу через повторитель E104 (E4) подается регулируемое напряжение постоянного тока, снимаемое с потенциометра УРОВЕНЬ. Потенциометром R124 (R18) можно установить основную симметрию усилителя.

С помощью симметричного сигнала в цепях коллекторов транзистора возбуждается по току пара транзисторов Е107, Е110, (Е7, Е10) или при изменении полярности кнопкой +/- пара транзисторов Е108 и Е109 (Е8, Е9). Выбранная пара транзисторов работает по схеме каскада с общей базой. Напряжение баз одной пары определяется делителем R144, R145 (R37, R42) и второй базы R136, R137 (R30, R31). В результате соединения сопротивления R142, (R32), R135 (R29) с корпусом отпирается одна или вторая пара транзисторов.

Нагрузочные сопротивления этого каскада это сопротивления R149 и R150 (R43, R44). (C1) into the signal path. With push-button S9.9, a low-pass filter, formed by R109, R110 and the input capacitance of the amplifier, can be inserted. When push-button S9.10 is depressed, a high-pass filter, formed by C102 and R108, is inserted. By depressing the push-buttons S9.9 and S9.10 simultaneously, a sinusoidal signal derived from the mains transformer is applied to the input of amplifier A via filter R111, C103. At the same time, automatic operation of time base A is blocked.

8.5.2. Synchronizing amplifiers (2, 22)

The wiring of the amplifier in time base A is exactly the same as that of the amplifier in time base B. The input signal is applied to the control electrode of the FET E102 (E2) via protective element R112, E101 (R7, E1). The input impedance is determined by the resistor R113 (R6) – 1 M Ω . One of the bases of the inverter E105 (E5), E106 (E6) is controlled by the emitter of the input transistor, via the follower E103 (E3). The second base obtains DC control voltage from the potentiometer "LEVEL" over the follower E104 (E4). The potentiometer R124 (R18) serves for adjusting the basic symmetry of the amplifier.

By means of a symmetrical signal on their collectors, either the pair of transistors E107, E110 (E7, E10), or the pair E108, E109 (E8, E9) is current-driven when the polarity is changed-over by means of the pushbutton "+/-". The selected transistor pair operates as a stage with common base. The voltage on the bases of one pair is determined by the divider formed by R144, R145 (R37, R42), and that on the bases of the other pair by R136, R137 (R30, R31). When the resistor R142 (R32), or R135 (R29) is connected to the framework, then either one pair of transistors opens, or the other pair.

The effective resistors of this stage are R149 and R150 (R43 and R44).

8.5.3. Tvarovací stupeň (3,23)

Základním prvkem tohoto stupně je dvojice tunelových diod E113 a E114 (E15, E16) napájena přes tranzistory E111, E112, (E11, E12) ze zdroje stálého proudu R154 (R48). Tvarovací stupeň základny B je navíc vybaven dvojicí diod E15, E16 a odpory R49, R50.

Obě tunelové diody mohou být nuceně udržovány ve stavu s nízkým výstupním napětím, je-li napětí na hradlovacím vstupu (mezi R165 a R167 případně R58 a R62) rovno nule. Pak je proud přitékající ze zdroje –12 V přes R168, E115 a R158 (R64, E17 a R60) větší než součet proudů přitékajících do tunelových diod z kladných zdrojů. Napětí na řídicí tunelové diodě E113 (E15) je nízké a celá časová základna je v klidovém stavu.

Zvýši-li se napětí na hradlovacím vstupu, dojde k otevření tranzistoru E116 (E18), uzavření E115 (E17) a záporný proud do tunelových diod přestane přité-

kat. Vyrovnávaci proud mezi tunelovými diodami, protékající přes R160 (R53) a pomocný proud z odporu R162 (R55) zabraňuje překlopení řídicí diody E113 (E15) do stavu s vyšším napětim, dokud do tohoto stavu nepřejde zvýšeným proudem tranzistoru E112 (E12) hradlovací dioda E114 (E16). Pouze za tohoto stavu může zvýšeným proudem tranzistoru E111 (E11) překlopit do stavu s vyšším napětím i řídicí tunelová dioda E113 (E15). Tím je spuštěn běh rozmítacího průběhu. Při jeho skončení jsou obě tunelové diody přivedením nulového napětí na hradlovací vstup opět nuceně vráceny do stavu s nízkým napětím.

Při otevření diod E13 a E14 v základně B je proudem přítékajícím (při stisknutém tlačítku AUT) přes R49

8.5.3. Каскад формирования (3, 23)

Основным элементом этого каскада является пара туннельных диодов E113 и E114 (E15, E16), питаемая через транзисторы E111, E112 (E11, E12) от источника постоянного тока R154 (R48). Каскад формирования генератора развертки B, кроме того, оснащен парой диодов E15, E16 и сопротивлениями R49, R50.

Оба туннельных диода могут находиться в принудительном режиме с принудительным выходным напряжением, если напряжение на вентильном входе (между R165 и R167 или R58 и R62) равно нулю. В этом случае ток, идущий от источника -12 В через R168, E115 и R158 (R64, E17 и R60) больше суммы токов, подводимых к туннельным диодам от источников положительного напряжения. Напряжение на управляющем туннельном диоде Е113 (Е15) мало и весь генератор развертки находится в состоянии покоя. Если повысить напряжение на вентильном входе, то отпирается транзистор Е116 (Е18), запирается Е115 (Е17) и отрицательный ток к туннельным диодам больше не протекает. Выравнивающий ток между туннельными диодами, протекающий через R160 (R53), и вспомогательный ток от сопротивления R162 (R55) препятствуют опрокидыванию управляющего диода Е113 (Е15) в состояние с большим напряжением до тех пор, пока в это состояние не перейдет вентильный диод Е114 (Е16) в результате увеличения тока транзистора Е112 (Е12). Только в этом состоянии из-за повышенного тока транзистора Е111 (Е11) может перейти в состояние с большим напряжением и управляющий туннельный диод Е113 (Е15). В результате этого запущен прямой ход развертки. После его окончания оба туннельных диода в результате подачи нулевого напряжения на вентильный вход принудительно возвращаются в состояние с низким на-

пряжением. При отпирании диодов E13 и E14 в генераторе развертки В в результате протекания тока (при

8.5.3. Shaping stages (3, 23)

Each shaping stage is formed by a pair of tunnel diodes E113 and E114 (E15 and E16), powered from a constant current source R154 (R48) via transistors E111, E112, (E11, E12). The shaping stage of time base B has, in addition, a further pair of diodes E15, E16 and resistors R49, R50.

The two tunnel diodes can be kept forcibly in a state of low output voltage when the voltage on the gating input (between R165 and R167, and between R58 and R62) is equal to zero. Then, the current flowing from the -12 V supply over R168, E115 and R158 (R64, E17 and R60) is higher than the sum of the currents flowing into the tunnel diodes from the positive supplies. The voltage across the control tunnel diode E113 (E15) is low, and the whole time base is in the

quiescent state. When the voltage on the gating input increases, transistor E116 (E18) opens, transistor E115 (E17) closes, and the negative current ceases to flow into the tunnel diodes.

The equalizing current between the tunnel diodes, when flows via R160 (R53), and the auxiliary current flowing from resistors R162 (R55), prevent control diode E113 (E15) from reversing into the state of higher voltage, as long as gating diode E114 (E16) does not change-over into this state due to the increased current of the transistor E112 (E12). Only in this state can the control tunnel diode E113 (E15) also reverse into the state of higher voltage, as a result of the increased current of transistor E111 (E11). Thus, the sweep operation has been started; when it terminates, the two tunnel diodes are returned forcibly into the state of low voltage by the application of zero voltage to the gating input.

When the diodes E13 and E14 in time base B an open, the positive current flowing through the tunned

trvale zvýšen kladný proud protékající tunelovými diodami. Obě tunelové diody pak reagují pouze na úroveň napětí na hradlovacím vstupu obvodu, změny proudu tranzistorů E11 a E12 nemají na stav obvodu vliv. Základna spouští další rozmítací průběh ihned po zvýšení napětí na hradlovacím vstupu.

8.5.4. Řídicí zesilovač (4, 24)

Tímto stupněm je impuls přivedený z řídicí tunelové diody E113 (E15) zesílen a upraven pro ovládání integrátoru, přisvětlovacího zesilovače a pomocných výstupů.

Základem obvodu je symetrický diferenciální zesilovač tvořený tranzistory E10 a E15 (E112 a E113 v B) se společným emitorovým odporem R18 (R118). Na jeho levý vstup je zapojena řídicí tunelová dioda. Zesílený impuls pro ovládání integrátoru je odebírán z kolektoru E15 (E113) přes E114 a E13 (E110, E109) na emitor tranzistoru E16 (E108). Proudovým impulsem z kolektoru E10 (E112) je přes R17 (R117) řízen přisvětlovací zesilovač.

Část proudového zdvihu tohoto tranzistoru je přiváděna přes R14, R16 (R114, R116) do stupně se společným emitorem E7 (E102), z jeho kolektoru jsou ovládány pomocné funkce a výstupy.

Pracuje-li základna A v režimu AUT bez spouštěcího signálu, je řídicí tunelová dioda ve stavu s nízkým napětím. Přitom je diferenciální zesilovač ovládán napětím z hradlovacího obvodu přiváděným do báze E15 přes dělič, tvořený R26, E17 a R21.

нажатой кнопке ABT.) через R49 ппостоянно повышен положительный ток, протекающий через туннельные диоды. Оба туннельных диода в этом случае реагируют только на уровень напряжения на вентильном входе схемы в то время, как изменение тока транзисторов E11 и E12 не оказывает влияния на состояние схемы. Генератор развертки запускает следующий прямой ход сразу же после повышения напряжения на вентильном входе.

8.5.4. Управляющий усилитель (4, 24)

С помощью этого каскада импульс, поступающий от управляющего туннельного диода E113 (E15), усиливается и формируется для управления интегратором, усилителем подсветки и вспомогательными выходами.

Основной частью схемы является симметричный дифференциальный усилитель, собранный на транзисторах E10 и E15 (E112 и E113 в B) с общим эмиттерным сопротивлением R18 (R118). К его левому входу подключен управляющий сигнальный диод. Усиленный импульс управления интегратором снимается с коллектора E15 (E113) через E14 и E13 (E110, E109) и подается на эмиттер транзистора E16 (E108). Импульсом тока от коллектора E10 (E112) через R17 (R117) осуществляется управление усилителем подсветки.

Часть тока этого транзистора подается через R14, R16 (R114, R116) в каскад с общим эмиттером Е7 (Е102) и сигналом с эмиттера последнего осуществляется управление вспомогательными функциями и выходами.

Если генератор развертки А работает в режиме АВТ. без сигнала запуска, то управляющий туннельный диод находится в состоянии с низким напряжением. При этом дифференциальный усилитель управляется напряжением вентильной схемы, подаваемым на базу Е15 через делитель, образованный элементами R26, Е17 и R21. diodes increases due to the currrent flowing through R49 when push-button "AUT." is depressed. The two tunnel diodes respond only to the voltage level on the gating input of the circuitry; changes in the currents of the transistors E11 and E12 have no influence. A further sweep of the time base starts immediately after a voltage rise on the gating input.

8.5.4. Control amplifiers (4, 24)

This stage increases and processes the pulse applied from the control tunnel diode E113 (E15) for controlling the integrator, the beam modulating amplifier, and the auxiliary outputs.

This stage is basically a symmetrical differential amplifier formed by transistors E10 and E15 (E112 and E113 in channel B) with common emitter resistor R18 (R118). The control tunnel diode is connected to the left-hand input. The amplified pulse for controlling the integrator is drawn from the collector of E15 (E113) via E14 and E13 (E110, E109), and applied to the emitter of transistor E16 (E108). The beam modulating amplifier is controlled over R17 (R117) by a current pulse taken from the collector of E10 (E112). A part of the current deviation of this transistor is applied over the resistors R14, R16 (R114, R116) to the stage E7 (E102) with common emitter, from the collector of which are controlled the auxiliary functions and outputs.

When time base A operates in the mode "AUT." without a triggering signal being applied, then the control tunnel diode is in the state of low voltage. The differential amplifier is controlled by a voltage drawn from the gating circuit and applied to the base of E15 via a divider formed by R26, E17 and R21.

8.5.5. Integrátor (5, 25)

Jako zdroj lineárního pilového průběhu je v přístroji použit Millerův integrátor, tvořený zesilovačem se sledovačem z MOSFE tranzistoru E19 (E114) na vstupu a stupněm se společným emitorem E22 (E117) na výstupu. Mezi vstupem a výstupem zesilovače je zapojena zpětnovazební kapacita Cx nabíjená z nastavitelného pomocného zdroje E23 (E118) přes Rx.

Toto nabíjení probíhá pouze tehdy, je-li dioda E13 (E109) otevřena impulsem z výstupu zesilovače řídicího impulsu. Tím je uzavřen tranzistor E16 (E108) a proud přitékající přes Rx nabíjí pouze kondenzátor Cx. Na kolektoru tranzistoru E22 (E117) vzniká lineárně klesající napětí, kterým je přes odpor R33 (R133) řízeno horizontální rozmítání osciloskopu.

Je-li impulsem z řídicího zesilovače uzavřena dioda E13 (E109), otevře se tranzistor E16 (E108) proudem určeným R22 (R122). Tento proud začne vybíjet Cx tak dlouho, dokud napětí na kolektoru E22 (E117) nedosáhne +12 V. Tím se uvede do činnosti symetrický zesilovač tvořený tranzistory E1 a E2 (E104 a E106). Zesilovač je vyvážen, je-li napětí na bázi tranzistorů E1 a E2 (E104 a E106) stejné. Proud tranzistoru E2 (E106) pak právě kompenzuje rozdíl mezi nabíjecím proudem z Rx a vybíjecím proudem daným R22 (R122).

8.5.6. Zastavovací obvod (6,26)

Obvod je tvořen dvěma tranzistory ve společném pouzdru E24 (E119) zapojený jako diferenciální zesilovač s kapacitní kladnou zpětnou vazbou kondenzátorem C12 (C108). Lineární rozmítací napětí z integ-

8.5.5. Интегратор (5, 25)

В качестве источника линейно пилообразного сигнала в приборе использован интегратор Миллера, собранный на усилителе с повторителем с полевым транзистором МОСФЕ E19 (E114) на входе и каскадом с общим эмиттером E22 (E117) на выходе. Между входом и выходом усилителя имеется емкость обратной связи Сх, заряжаемая от регулируемого вспомогательного источника E23 (E118) через

Зарядка осуществляется только в том случае, если диод Е13 (Е109) отперт импульсом с выхода усилителя управляющего импульса. В результате этого заперт транзистор Е16 (Е108) и ток, протекающий через Rx, заряжает только конденсатор Сх. На коллекторе транзистора Е22 (Е117) возникает линейно уменьшающееся напряжение, с помощью которого через сопротивление R33 (R133) осуществляется горизонтальная развертка осциллоскопа.

тальная развертка осциллютии Если импульсом из управляющего усилителя заперт диод E13 (E109), то отпирается транзистор E16 (E108) током, определяемым R22 (R122). Этот ток разряжает Сх до тех пор, пока напряжение на коллекторе E22 (E117) не достигнет значения +12 В. В этот момент начинает работать симметричный усилитель, собранный на транзисторах E1 и E2 (E104 и E106). Усилитель находится в равновесии, если напряжение на базах транзисторов E1 и E2 (E104 и E106) одинаково. Ток транзистора E2 (E106) в этом случае как раз компенсирует разницу между током заряда через Rx и током разряда через R22 (R122).

8.5.5. Integrators (5, 25)

The BM 566A oscilloscope employs Miller integrators as sources of linear sawtooth waveforms. Each integrator is formed by an amplifier with a follower which employs a MOSFET-type transistor E19 (E114) at the input and a stage with common emitter E22 (E117) a the output. Between the input and the output of the amplifier is a feedback capacitor Cx which is charged by an adjustable supply E23 (E118) via Rx.

This charging of Cx takes place only when the diod E13 (E109) has been opened by a pulse from th control pulse amplifier. Then, the transistor E1 (E108) is closed and the current flowing through R charges only the capacitor Cx. On the collector transistor E22 (E117), a linearly decreasing voltage created which controls the horizontal sweep of th oscilloscope via resistor R33 (R133). When the diod E13 (E109) is closed by a pulse from the control an plifier, transistor E16 (E108) opens by the current de termined by R22 (R122). This current discharges 0 until the voltage on the collector of E22 (E117) rea ches +12 V. Thus, the symmetrical amplifier, forme by the transistors E1 and E2 (E104 and E106), is s in operation. This amplifier is balanced when the vo tages on the bases of transistors E1 and E2 (E10 and E106) are equal. The current of transistor E (E106) just exactly compensates the difference be ween the charging current flowing through Rx and the discharging current given by R22 (R122).

8.5.6. Схема остановки (6, 26)

Схема собрана на двух транзисторах в общем корпусе E24 (E119), которые включены по схеме дифференциального усилителя с емкостной положительной обратной связью, обеспечиваемой конденсатором C12 (C108). Линейное напряже-

8.5.6. Stopping circuits (6, 26)

Each stopping circuit is formed by two transistors E (E119) in a common sleeve and connected as a differential amplifier with positive feedback implement by capacitor C12 (C108). The linear sweep volta taken from the integrator is applied to the base of t

rátoru je přiváděno na bázi levého tranzistoru přes kompenzovaný dělič R38, C11, R39 (R138, C107, R139).

Dosáhne-li napětí na výstupu děliče nuly, dosáhl zároveň i výstupní průběh integrátoru požadované amplitudy. Napětí pravého kolektoru se sníží a po zpracování tohoto impulsu dalšími obvody dojde k vrácení integrátoru do klidového stavu. ние развертки с выхода интегратора подается на базу левого транзистора через компенсированный делитель R38, C11, R39 (R138, C107, R139).

Когда напряжение на выходе делителя обращается в ноль, выходной сигнал интегратора достигает требуемой амплитуды. Напряжение правого коллектора уменьшается и после обработки импульса в последующих каскадах интегратор возвращается в состояние покоя. left-hand transistor via a compensated divider formed by R38, C11, R39 (R138, C107, R139).

When the voltage on the output of the divider reaches zero, also the output waveform of the integrator reaches the required amplitude. The voltage on the righthand collector becomes reduced and after this pulse has been processed by further circuits of the oscilloscope, the integrator returns into the quiescent state.

8.5.7. Hradlovací obvod (7, 27)

Tento obvod je řídicím prvkem rozmítacího generátoru. Je vytvořen jako RS klopný obvod ze dvou hradel s výstupy 03 a 06 v IO 2 (v základně B výstupy 03 a 06 v IO 101).

Je-li výstup 03 ve stavu 0, je zablokován tvarovací stupeň a základna nemůže spustit. Po přivedení záporného impulsu na vstup 05 dojde ke změně stavu RS obvodu a tím k odblokování tvarovacího stupně. Do RS obvodu základny A je tento impuls přiváděn z obvodu zádrže (8 v blokovém schématu) nebo z obvodu pro jednorázové spouštění (10 v blokovém schématu) podle polohy tlačítka S8.4.

Do RS obvodu základny B je impuls přiváděn ze zpožďovacího obvodu. K vrácení RS obvodu do výchozího stavu musí být na vstup 01 přiveden záporný impuls ze zastavovacího obvodu. V základně A může být impuls přiveden i z výstupu tvarovače zastavovacího impulsu (výstup 03 IO 3), dosáhne-li rozmítací průběh základny B vrcholu dříve než v základně A. Podobně základna B může být zastavena předčasně impulsem přivedeným ze základny A přes diodu E122 a odpor R166.

8.5.7. Вентильная схема (7, 27)

Эта схема является управляющим элементом генератора равзертки. Она представляет собой триггер типа RS, состоящий из двух вентилей с выходами 03 и 06 в Ю 2 (в генераторе развертки В выходы 03 и 06 в Ю 101).

Если выход 03 в состоянии 0, то каскад формирования заблокирован и запуск денератора развертки невозможен. После подачи отрицательного импульса на вход 05 имеет место изменение состояния триггера RS, в результате чего снимается блокировка каскада формирования. В триггер RS генератора развертки (8 на блоксхеме) или из схемы однократного запуска (10 на блок-схеме) в зависимости от положения кнопки S8.4.

В триггер RS генератора развертки В импульс подается из схемы задержки. Для реверсирования триггера RS в исходное состояние на вход 01 должен подаваться отрицательный импульс из схемы остановки. В генераторе развертки А импульс может сниматься и с выхода каскада формирования импульса остановки (выход 03 IO 3), если сигнал развертки генератора В достигает максимума раньше сигнала развертки генератора А. Аналогично генератор развертки В может быть преждевременно остановлен импульсом от генератора развертки А через диод E 122 и сопротивление R166.

8.5.7. Gating circuits (7, 27)

These circuits control the scanning generator. Each is an RS flip-flop circuit composed of two gates in the integrated circuit IO 2 with outlets 03 and 06 (in time base B, in IO 101 with outlets 03 and 06).

When outlet 03 is in the state zero, the shaping stage is blocked and the time base cannot start. After the application of a negative pulse to inlet 05, the state of the RS flip-flop circuit changes and thus the shaping stage becomes unblocked. This pulse in time base A is applied either from the retaining circuit (8 in the block diagram), or from the circuit for one-shot triggering (10 in the block diagram), depending on the setting of the change-over push-button switch S8.4.

In time base B, the negative pulse for the RS flip-flop circuit is taken from the delaying circuit. For returning the RS flip-flop circuit into the initial state, a negative pulse taken from the stopping circuit must be applied to inlet 01. In time base A, this pulse can be taken also from the output of the shaper of the stopping pulse (outlet 03 of IO 3) when the sweep waveform of time base B reaches its peak before that of time base A. Similarly, time base B can be stopped prematurely by a pulse taken from time base A via diode E122 and resistors R166.

49

8.5.8. Obvod zádrže (8)

Obsahuje vybíjecí tranzistor E5, zádržový kondenzátor Cz a diferenciální zesilovač, vytvořený ze dvou tranzistorů ve společném pouzdře E26. Probíhá-li v integrátoru nárůst rozmítacího průběhu, je ve stabilizačním zesilovači otevřen tranzistor E1. Spádem na odporu R6 je otevřen vybíjecí trazistor E5 a zcela vybit kondenzátor Cz. Výstup diferenciálního zesilovače (levý kolektor E26) je udržován ve stavu s vyšším napětím až do skončení aktivní části rozmítacího průběhu a opětného nabití kondenzátoru Cz. Výstupním záporným impulsem je pak řízen hradlovací obvod.

8.5.9. Elektronický přepínač (9)

Základním prvkem je RS klopný obvod z hradel s výstupy 08 a 11 v IO 3. Jeho výstupy je otevřeno buď hradlo s výstupem 11 při spouštěném provozu, nebo hradlo s výstupem 08 v IO 2 při volném běhu základny. Přichází-li spouštěcí signál do základny v dostatečně krátkých intervalech, zůstane RS obvod ve stavu s vyšším napětím na výstupu 08, tím i otevřené hradlo s výstupem 11 v IO 2 a základna pracuje jako spouštěná.

Nepřichází-li spouštěcí signál ani po určené době, vyjde z časového obvodu automatiky (11 v blokovém schématu) záporný impuls na vstup 13 RS klopného obvodu. RS obvod změní stav, otevře hradlo s výstupem 08 v IO 2.

Tím se uzavře smyčka ovládání integrátoru a rozmítací generátor začne pracovat zcela volně s maximálním opakovacím kmitočtem.

Objeví-li se opět spouštěcí signál, vyjde ze součinového obvodu (12 v blokovém schématu) záporný im-

8.5.8. Схема задержки (8)

Оно содержит разрядный транзистор E5, конденсатор задержки C_z и дифференциальный усилитель, собранный на двух транзисторах в общем корпусе E26. Если в интеграторе нарастает сигнал развертки, то в усилителе стабилизации отперт транзистор E1. В результате падения напряжения на сопротивлении R6 отперт разрядный транзистор E5 и полностью разряжен конденсатор C_z. Выход дифференциального усилителя (левый коллектор E26) поддерживается в состоянии с более высоким напряжением вплоть до окончания прямого хода развертки и повторного заряда конденсатора C_z. Выходной отрицательный импульс служит для управления вентильной схемой.

8.5.9. Электронный коммутатор (9)

Основным элементом является триггер типа RS, собранный на вентилях с выходами 08 и 11 в Ю 3. Его выходные сигналы отпирают вентиль с выходом 11 при режиме запуска или вентиль с выходом 08 в Ю 2 при работе генератора в режиме автоколебаний. Если сигнал запуска поступает в генератор развертки с достаточно коротким перииодом, то триггер RS остается в состоянии, соответствующем более высокому напряжению на выходе 08, в результате чего отперт вентиль с выходом 11 интегральной микросхемы Ю 2 и генератор развертки работает в режиме запуска.

Если сигнал запуска не поступает, то после определенного времени схема времени автоматики (11 на блок-схеме) выдает отрицательный импульс на вход 13 триггера RS. Последний изменяет свое состояние, отпирается вентиль с выходом 08 Ю 2. В результате этого замыкается цепь управления интегратором и генератор развертки начинает работать в режиме автоколебаний с максимальной частотой повторения.

При появлении сигнала запуска схема произведения (12 на блок-схеме) выдает отрицатель-

8.5.8. Hold off circuit (8)

This circuit consists of discharging transistors E5, retaining capacitor Cz, and a differential amplifier formed by two transistors E26 mounted in a common sleeve. When the sweep waveform in the integrator increases, transistor E1 in the stabilizing amplifier is open. The voltage drop across resistor R6 opens discharging transistor E5 and the capacitor Cz is discharged completely. The output of the differential amplifier (left-hand collector of E26) is kept in a state of higher voltage up to the termination of the active part of the sweep waveform and the recharging of capacitor Cz. Then, the gating circuit is controlled by th negative output pulse.

8.5.9. Electronic switch (9)

The basis of this circuit is an RS flip-flop circuit consisting of an integrated circuit IO 3 with outlets 08 and 11. These outlets keep open either the gate in IO 2 with outlet during triggered operation, or the gate in IO 2 with outlet 08 when the time base runs freely. If the triggering signal for the time base arrives at sufficiently short time slots, then the RS flip-flop circuit remains in the state of higher voltage on outlet 08 and thus also the gate in IO 2 with outlet 11 remains open and the time base operates in the triggered mode.

If the triggering signal does not arrive even after the predetermined time, then the timing circuit of the automatic control (11 in the block diagram) issues a pulse for inlet 13 of the RS flip-flop circuit; this circuit reverses and opens the gate in IO 2 with outlet 08. Thus, the loop for controlling the integrator becomes completed and the sweep generator starts to operate guite freely at maximum repetition frequency.

At the arrival of the triggering signal again a negative pulse issued by the AND circuit (12 in the

puls na vstup 09 RS klopného obvodu a vrátí jej do původního stavu, kdy základna opět pracuje jako spouštěná. Při uvolnění tlačítka AUT je na vstup 09 RS klopného obvodu trvale přivedena úroveň log. 0. Základna pak při přítomnosti signálu pracuje jako spouštěná, bez signálu je v klidu.

8.5.10. Obvod pro jednorázové spouštění (10)

Samostatná tištěná deska tohoto obvodu je umístěna v přední části zásuvné jednotky na tlačítkách S8.4 a S8.5. Při stisknutí tlačítka S8.4 může být obvod odblokován impulsem z obvodu zádrže (8 v blokovém schématu), přivedeným přes dolnofrekvenční propust R170, C170 na vstup integrovaného obvodu. Po stisknutí tlačítka S8.5 se objeví na výstupu obvodu (výstup 8 v IO) jediný impuls, kterým je překlopen hradlovací obvod (7 v blokovém schématu).

Je-li tlačítko S8.4 v uvolněné poloze, je obvod zádrže přímo propojen do hradlovacího obvodu.

8.5.11. Časovací obvod automatiky (11)

Obvod určuje dobu od skončení posledního spouštěného běhu rozmítacího průběhu do přepnutí na volný běh. Časovací člen je vytvořen z odporu R57 a kondenzátorů C14 a C15. Impulsem, kterým je blokován spouštěcí obvod, je současně přes invertor (výstup 8 v IO 1) a diodu E36 vybíjen časovací člen. Je-li doba mezi vybíjecími impulsy delší než časová konstanta časovacího členu, vzroste napětí na kondenzátorech C14 a C15, nabíjecí proud z odporu R57 otevře přes diiodu E35 tranzistor E38. Multilvibrátor, vytvořený komplementárními tranzistory E37 a E38, vyrábí na ный импульс, поступающий на вход 09 триггера RS, который переходит в прежнее состояние, при котором генератор развертки работает в режиме запуска. При освобождении кнопки ABT. на вход 09 триггера RS постоянно подается уровень лог. 0. Генератор развертки в этом случае при наличии сигнала работает в режиме запуска, а при отсутствии сигнала не работает.

8.5.10. Схема однократного запуска (10)

Самостоятельная плата печатного монтажа этой схемы расположена в передней части выдвижного блока на кнопках S8.4 и S8.5. При нажатии кнопки S8.4 может быть снята блокировка схемы импульсом из схемы задержки (8 на блок-схеме), подаваемым через фильтр нижних частот R170, C170 на вход интегральной схемы. После нажатия на кнопку S8.5 на выходе схемы (выход 8 микросхемы) появляется единственный импульс, который опрокидывает вентильную схему (7 на блок-схеме).

Если кнопка S8.4 в свободном положении, то схема задержки непосредственно соединена с вентильной схемой.

8.5.11. Схема управления автоматикой (11)

Схема определяет время от окончания последнего запущенного прямого хода развертки до момента переключения в режим автоколебаний. Цепочка времени образована резистором R57 и конденсаторами C14 и C15. Импульс, который блокирует схему запуска, одновременно через инвертор (выход 8 в Ю 1) и диод E36 разряжает цепочку времени. Если время между разрядными импульсами больше постоянной времени цепочки, то напряжение на конденсаторах C14 и C15 возрастает зарядный ток, снимаемый с резистора R57 отпирает транзистор E38 через диод E35. Мультивибратор, собранный на комплементарных транзисторах E37 block diagram) reaches inlet 09 of the RS flip-flop circuit and returns it into the original state when the time base operates again in the triggered mode. When the push-button "AUT." is released, log. 0 is applied permanently to inlet 09 of the RS flip-flop circuit. Then, when a signal is present, the time base operates in the triggered mode; when a signal is not present, the time base is idle.

8.5.10. Circuit for one-shot triggering (10)

The separate printed circuit board which forms this circuit is in the front part of the plug-in unit mounted on the push-buttons S8.4 and S8.5. When push-button S8.4 is depressed, the circuit can be unblocked by a pulse from the retaining circuit (8 in the block diagram), applied to the input of the integrated circuit via low-pass filter R170, C170. After depressing push-button S8.5, one single pulse appears on the output of the circuit (outlet 8 of the integrated circuit) and reverses the gating circuit (7 in the block diagram).

When push-button S8.4 is released, then the retaining circuit is connected directly to the gating circuit.

8.5.11. Timing circuit of the automatic control (11)

This circuit determines the time which has to elapse from the termination of the last triggered sweep waveform to switching over to free run. The timing element is formed by resistors R57 and capacitors C14 and C15. The pulse which blocks the triggering circuit simultaneously discharges the timing element via the inverter in integrated circuit IO 1 with outlet 8 and the diode E36. If the time slot between the discharging pulses exceeds the time constant of the timing element, then the voltage on the capacitors C14 and C15 increases and the charging current of resistor R57 opens transistor E38 via diode E35. The multivibrator, formed by complementary transistors E37 and E38, produces negative pulses on the collector of kolektoru E38 záporné impulsy. Jimi je RS obvod v elektronickém přepínači (9 v blokovém schématu) uveden do stavu, při kterém rozmítací generátor volně běží.

Časovací obvod automatiky může být vyřazen z činnosti uvolněním tlačítka AUT. Pak jsou proudem záporného zdroje přes R55 a E34 časovací kondenzátory C14 a C15 udržovány trvale ve vybitém stavu. Zároveň je přes R54 elektronický přepínač trvale udržován ve stavu pro spouštěný provoz.

8.5.12. Součinový obvod (12)

Tento obvod určuje okamžik přepnutí z volného běhu rozmítacího generátoru zpět na spouštěný provoz po výskytu prvního spouštěcího impulsu.

Obvod tvořený tranzistorem E31 a diodami E28, E29 srovnává stav na výstupu elektronického přepínače při volném běhu rozmítacího generátoru (výstup 08 v IO 2) se stavem na pomocném výstupu řídicího zesilovače (E7). Je-li řídicí tunelová dioda E113 (ve spouštěcím obvodu) ve stavu s nižším napětím, jsou stavy na vstupech součinového obvodu vzájemně inverzní a jeho výstupní napětí zůstává na vyšší úrovni.

Dojde-li po příchodu spouštěcího signálu k překlopení tunelové diody E113 do stavu s vyšším napětím, přestane impuls na pomocném výstupu řídicího zesilovače být inverzní k impulsu z výstupu elektronického přepínače. Na výstupu součinového proudu se objeví záporný impuls, který překlopí elektronický přepínač do stavu pro spouštěný provoz. Zpožďovací člen L1 slouží k vytovnání rozdílného průchozího zpoždění signálů.

и E38, вырабатывает отрицательные импульсы на коллекторе E38. Благодаря этим импульсам тригrep RS электронного коммутатора (9 на блок-схеме) переводится в состояние, при котором генератор развертки работает в режиме автоколебаний. Схема времени автоматики может быть выключена путем освобождения кнопки ABT. В этом случае в результате тока источника отрицательного напряжения, протекающего через R55 и E34, конденсаторы C14. и C15 постоянно удерживаются в разряженном состоянии. Одновременно через R54 электронный коммутатор постоянно удерживается в состоянии режима запуска.

. . .

8.5.12. Схема произведения (12)

Эта схема определяет момент перехода от режима автоколебаний генератора развертки обратно в режим запуска после появления первого импульса запуска.

Схема, собранная на транзисторе ЕЗ1 и диодах Е28, Е29 сравнивает состояние на выходе электронного коммутатора при режиме автоколебаний генератора развертки (выход 08 в Ю 2) с состоянием на вспомогательном выходе управляющего усилителя (Е7). Если управляющий туннельный диод Е113 (в схеме запуска) находится в состоянии с более низким напряжением, то состояния на входах схемы произведения инвертированы друг относительно друга и выходное напряжение схемы соответствует более высокому уровню. Если после поступления сигнала запуска имеет место опрокидывание туннельного диода Е113 и его переход в состояние с более высоким напряжением, то импульс на вспомогательном выходе управляющего усилителя уже не является инвертированным относительно импульса на выходе электронного коммутатора. На выходе схемы произведения появляется отрицательный импульс, который опрокидывает электронный коммутатор в состояние режима запуска. Элемент задержки L1 служит для компенсации разности времен прохождения сигналов.

E38; these pulses set the RS flip-flop circuit in the electronic switch (9 in the block diagram) into the state in which the sweep generator runs freely.

The timing circuit of the automatic control can be put out of operation by releasing the push-button "AUT.". Then, the timing capacitors C14 and C15 are kept permanently in the discharged state by a supply of negative current via R55 and E34. At the same time, the electronic switch is kept permanently in the state for triggered operation via R54.

8.5.12. AND circuit (12)

This circuit determines the instant of switching-over of the sweep generator back to the triggered mode of operation at the arrival of the first triggering pulse.

The circuit, formed by transistor E31 and diodes E28, E29, compares the state on the output of the electronic switch during free run of the sweep generator (outlet 08 of IO 2) with the state on the auxiliary output of the control amplifier (E7). When the control tunnel diode E113 (in the triggering circuit) is in the state of lower voltage, then the states on the inputs of the AND circuit are mutually inversed and the output vol tages of this circuit remain at the higher level. When the tunnel diode E113 reverses to the state of higher voltage after the arrival of the triggering signal then the pulse on the auxiliary output of the control amplifier ceases to be opposite to the pulse from the output of the electronic switch. Then, a negative pulse appears on the output of the AND circuit and reverses the electronic switch to the state for trigge red operation. The delay element L1 serves for com pensating the difference between the transfer delay of the signals.

8.5.13. Pomocné výstupní zesilovače (13, 14, 30)

Zesilovače výstupních impulsů slouží k získání signálů pro přepínání časových základen kanálů vertikálního zesilovače a pro vnější konektory. Budicí signál je odebírán z pomocného výstupu řídicího zesilovače (E7). Přes invertory s výstupem 04 a 06 v IO 1 je získán impuls pro vnější konektory. Diody E41, E42 a odpor R70 slouží k ochraně před poškozením vnějším napětím a zkratem.

Proud pro svítící diodu je přiváděn před tranzistor E43, buzený přes dělič R66 a R67 z výstupu 06 hradla IO 3. Na vstup 04 tohoto hradla je přiváděn impuls z hradlovacího klopného obvodu, na vstup 05 z výstupu 12 invertoru v IO 1. Je-li výstupní úroveň hradla = 0, pak dioda svítí. V základně B je k získání impulsu pro vnější konektor použito invertoru s výstupem 06 v IO 1 s ochranou diodami E39, E40 a odporem R75.

8.5.14. Zpožďovací obvod (28)

Je tvořen symetrickým zesilovačem ve společném pouzdře E126, Schmittovým klopným obvodem z tranzistorů E124, E125 a zesilovačem impulsu E131.

Na bázi levého tranzistoru v E126 je přiváděn přes R149 rozmítací průběh základny A, na bázi pravého tranzistoru srovnávací stejnosměrné napětí, volitelné desetiotáčkovým potenciometrem "ZPOŽDĚNÍ JEM-NĚ". Dojde-li k okamžité shodě napětí na obou bázích, překlopí Schmittův klopný obvod do stavu s vyšším napětím na kolektoru E125. Takto vzniklým impulsem je přes derivační člen C111, R154 otevírán

8.5.13. Вспомогательные выходные усилители (13, 14, 30)

Усилители выходных импульсов служат для получения сигналов коммутации генераторов развертки каналов вертикального усилителя и для внешних разъемов. Сигнал возбуждения снимается со вспомогательного выхода управляющего усилителя (Е7). Через инверторы с выходом 04 и 06 в Ю 1 получается импульс для внешних гнезд. Диоды Е41, Е42 и R70 служат для защиты от выхода из строя в результате подачи внешнего напряжения и при коротком замыкании.

Ток для светодиода подается через транзистор E43, возбуждаемый сигналом с делителя R66 и R67, питаемого от выхода 06 вентиля Ю 3. На вход 04 этого вентиля подается импульс вентильного триггера, на вход 05 с выхода 12 инвертора в Ю 1. Если выходной уровень вентиля равен нулю, то диод горит. В генераторе развертки В для получения импульса, подаваемого на внешнее гнездо, использован инвертор с выходами 06 Ю 1 с защитой диодами E39, E40 и сопротивлением R75.

8.5.13. Auxiliary output amplifiers (13, 14, 30)

The amplifiers of the output pulses serve for the production of signals for switching-over the time bases of the vertical amplifier channels and for supplying the external connectors. The driving signal is drawn from the auxiliary output of the control amplifier (E7). The pulse for the external connectors is obtained over the inverter in integrated circuit IO 1 with outlets 04 and 06. The diodes E41, E42 and the resistor R70 serve for protecting the oscilloscope against damage by an external voltage or short circuit.

The current for the LED is obtained via transistor E43 which is driven by the outlet 06 of the gate IO 3 via divider R66, R67; to intlet 04 of this gate a pulse is applied from the gating flip-flop circuit, and to its inlet 05 from outlet 12 of the inverter in IO 1. When the output level of this gate is zero, then the LED is alight. The inverter in IO 1 with outlet 06, and the protective diodes E39, E40 and the resistor R75, serve in time base B for producing the pulse for the external connector.

8.5.14. Схема задержки (28)

Она образована симметричным усилителем в общем корпусе E126, триггером Шмитта, собранным на транзисторах E124, E125, и усилителем импульсов E131.

На базу левого транзистора Е126 подается через R149 сигнал развертки генератора А, на базу правого транзистора подается постоянное напряжение сравнения, установленное с помощью потенциометра на 10 оборотов «ЗА-ДЕРЖКА ТОЧНО». В момент соответствия напряжений на обеих базах опрокидывается триггер Шмитта и на коллекторе E125 имеет место повышенное напряжение. В результате возникшего импульса через дифференцирующую цепочку C111, R154 отпирается транзистор

8.5.14. Delay circuit (28)

This circuit is formed by a symmetrical amplifier E126, the two units of which are in common sleeve, a Schmitt-type flip-flop circuit formed by the transistors E124, E125, and a pulse amplifier E131.

To the base of the left-hand transistor in E126 is applied the sweep waveform of time base A via R149, and to the base of the right-hand transistor is applied a DC voltage for comparison, which can be selected by means of the ten-turn potentiometer "DELAY FI-NE". When coincidence of the two voltages on the bases takes place, then the Schmitt flip-flop circuit reverses to the state of higher voltage on the collector of E125. The pulse thus created opens transistor E131 via the differentiating element C111, R154. The tranzistor E131. Impulsem z jeho kolektoru je překlápěn hradlovací obvod základny B.

Je-li přepínač rychlostí základny B v poloze VYP., je stejnosměrným napětím z výstupu integrátoru B přes R158 trvale otevřen E129 a tím zcela uzavřen symetrický zesilovač. Základna B zůstane zablokována.

8.5.15. Elektronický přepínač funkcí (16)

Zapojení elektronického přepínače, ovládaného tlačítky S8.1 až 3 umožňuje volit tři kombinace propojení výstupů rozmítacích průběhů a přisvětlovacích impulsů obou základen se vstupy horizontálního a přisvětlovacího zesilovače.

Poloha A: Na vstup horizontálního zesilovače je přes E5 připojen výstup rozmítacího průběhu základny A a na vstup přisvětlovacího zesilovače přes E16 výstup přisvětlovacího impulsu základny A.

Je-li v provozu i základna B, přičítá se k amplitudě přisvětlovacího impulsu A přes E18 i část amplitudy přisvětlovacího impulsu B, nastavená omezovačem tvořeným děličem R27, R28 a diodou E15.

Poloha ALT: Na vstup horizontálního zesilovače jsou střídavě propojovány výstupy pilových průběhů obou základen. Spínací tranzistory E5 a E9 připojí na vstup horizontálního zesilovače pilový průběh vždy jedné základny.

Na vstup přisvětlovacího zesilovače je přiveden výstup přisvětlovacího impulsu odpovídající základny otevřením jednoho z tranzistorů E16 nebo E18.

Průchod zastavovacího impulsu ze základny B od základny A je blokován.

E131. Импульсом, снимаемым с его коллектора, опрокидывается вентильная схема генератора развертки В.

Если переключатель скоростей генератора развертки В и положении ВЫКЛ., то в результате постоянного напряжения, снимаемого с выхода интегратора В через R158, постоянно отперт E129 и в результате этого заперт симметричный усилитель. Генератор развертки В остается заблокированным.

8.5.15. Электронный переключатель режимов работы (16)

Схема электронного переключателя, управляемого кнопками S8.1—3, дает возможность выбрать одну из трех комбинаций проключения выходов сигналов развертки и импульсов подсветки обоих генераторов со входами усилителя горизонтального отклонения и усилителя подсветки.

Положение А: на вход горизонтального усилителя через Е5 подается выходной сигнал развертки генератора А и на вход усилителя подсветки через Е16 подается выходной импульс подсветки генератора развертки А.

Если работет и генератор развертки В, то к амплитуде импульса подсветки А через Е18 прибавляется и часть амплитуды импульса подсветки В. установленная ограничителем. собранным на делителе R27, R28 и диоде E15. Положение АЛТ.: на вход усилителя горизонпопеременно подотклонения тапьного ключаются выходы пилообразных сигналов обоих генераторов развертки. Ключевые транзисторы Е5 и Е9 подключают ко входу горизонтального усилителя пилообразный сигнал одного из генераторов развертки. На вход усилителя подсветки подается выходной импульс подсветки соответствующего генератора развертки в результате отпирания одного из транзисторов Е16 или Е18. Прохождение импульса остановки от генератора развертки В к генератору развертки А заблокировано.

gating circuit in time base B is reversed by a pulse from the collector of this transistor.

When the speed selector of time base B is set to the position "OFF", then the DC voltage from the output of the integrator (B) keeps E129 permanently oper via R158 and thus the symmetrical amplifier fully classed. Consequently, time base B remains blocked.

8.5.15. Electronic function selector switch (16)

The design of this electronic switch, which is control led by means of the push-buttons S8.1 to S8.3, ena bles the selection of three combinations of the swee waveform outputs and brightness modulating pulse for the two time bases, and the inputs of the horizon tal and brightness modulating amplifier.

Setting "A" — The output of the sweep waveform of the base A is applied to the input of the horizontal and plifier via E5. The output of the brightness modulating pulse of time base A is connected to the input of the brightness modulating amplifier via E16.

When also time base B is operative, then to the amplitude of the modulating pulse A is added, via E1 also a part of the amplitude of the modulating pulse set by a limiter formed by the divider R27, R28 at the diode E15.

Setting "ALT." — The outputs of the sawtooth wave forms of the two time bases are connected to the in put of the horizontal amplifier alternately. The switch ing transistors E5 and E9 connect the sawtooth we veform of one of the time bases at a time to the input of the horizontal amplifier.

The output of the brightness modulating pulse of the appropriate time base is connected to the input of the brightness modulating amplifier by one of the transit tors E16, E18 opening.

The passing of the stopping pulse from time bas B into time base A is blocked. Zároveň s přepnutím na základnu B je impulsem z výstupu 11 IO 1 přes R11 rozvážen vertikální zesilovač.

Poloha B: Na vstupy horizontálního (přes E9) i přisvětlovacího zesilovače (přes E18) jsou přivedeny výstupy pouze základny B. Průchod zastavovacího impulsu ze základny B do A je otevřen.

Provoz XY: Při tomto režimu je na vstup horizontálního zesilovače přiváděn signál z vnitřní cesty synchronizačního signálu přes zesilovač 36 a otevřený spínací tranzistor E13. Všechny signály k ovládání spínacích tranzistorů jsou zpracovány log. sítí tvořenou IO 1 a IO 2. Одновременно с переключением на генератор развертки В импульсом с выхода 11 Ю 1 через R11 разбалансирован усилитель вертикального отклонения.

Положение В: на входы усилителя горизонтального отклонения (через Е9) и усилителя подсветки (через Е18) подаются выходные сигнали только от генератора В. Прохождение импульса остановки от генератора В к генератору А существует.

Режим ХҮ: в этом режиме на вход усилителя горизонтального отклонения подается сигнал от внутреннего тракта синхр. сигнала через усилитель 36 и отпертый ключевой транзистор Е13. Все сигналы, предназначенные для управления ключевыми транзисторами, обрабатываются логической сетью, собраной на Ю 1 и Ю 2. At the same time, at switching-over to time base B, the vertical amplifier is unbalanced by a pulse taken from the outlet 11 of IO 1 via R11.

Setting "B" — To the inputs of the horizontal amplifier and of the brightness modulating amplifier (via E9 and E18 respectively), only the outputs from time base B are applied. The passing of the stopping pulse from time base B into time base A is open.

Setting "X-Y" – In this mode, the input of the horizontal amplifier obtains a signal from the internal synchronizing signal path via the amplifier (36 in the block diagram), and the open switching transistor E13. All the signals for actuating all the switching transistors are controlled by the logic network formed by the integrated circuit IO 1 and IO 2.

9. POKYNY PRO ÚDRŽBU

9.1. Údržba po každých 250 až 300 hod. provozu nebo 1 roce

Přístroj nevyžaduje zvláštní péči. Doporučujeme prohlédnout celý přístroj, jednotlivé části očistit suchým štětcem od prachu, zejména dotykové části přepínačů. K dokonalému očištění dotykových ploch je možné použít technického benzínu. Omak na stínítku čistíme vlhkým hadříkem a mýdlem nebo univerzálním saponátovým prostředkem. Čištění se nesmí provádět silným tlakem nebo třením, neboť by se mohl smazat nápis na štítku. K čištění nepoužívejte rozpouštědla.

Omak na hliníkových nelakovaných částech lze nejlépe vyčistit měkkou kancelářskou gumou.

9. УКАЗАНИЯ ПО УХОДУ ЗА ПРИБОРОМ

9.1. Уход, осуществляемый через 250—300 часов эксплуатации или один раз в год

Прибор не нуждается в особом уходе. Рекомендуется весь прибор осмотреть, отдельные части очистить сухой кистью от пыли, особенно контактные части переключателей. Для надежной чистки контактных поверхностей можно применять технический бензин. Отпечатки пальцев на экране следует очистить влажной тряпкой и мылом или универсальным моющим средством. При чистке не следует применять чрезмерное давление или трение во избежания стирания надписей на панели. Для чистки не следует применять разбавители. Отпечатки на алюминиевых нелакированных частях лучше всего устраняются с помощью мягкого канцелярского ластика.

9. INSTRUCTIONS FOR MAINTENANCE

9.1. Maitenance after every 250 to 300 hours of operation, or after one year of use

The BM 566A oscilloscope does not require any special care. However, it is recommended to inspect the whole instrument and to clean dust from its individual parts with a dry soft paint brush paying special attention to the contacts of the selectors and switches. Petrol can be used for thorough cleaning of the contact surfaces. Finger marks on the CRT screen and on the panel can be removed best by using a soft cloth moistened in soapy water or in a mild detergent. Cleaning must not be carried out by applying pressure or by rubbing, as the markings on the panel could be damaged. Solvents must not be used for cleaning! Finger marks on any of the aluminium parts which are not lacquered can be cleaned off easily with a soft rubber. Před počátkem kontroly nebo nastavení obvodů ponechte přístroj asi 20 minut při referenční teplotě (+23 °C) v provozu.

Při této práci dbejte všech předpisů pro práci na zařízeních pod napětím.

9.2. Použité měřicí přístroje

Pro kontrolu správnosti nastavení přístroje je třeba použít přístrojů, jejichž vlastnosti vyhovují dále uvedeným požadavkům:

- Vf generátor sinusových průběhů (1 MHz až 120 MHz se stálou amplitudou) 0,5 Vef.
- Digitální voltmetr 10 mV až 200 V ±0,5 % (např. BM 533)

Osciloskop minimálně 0 až 90 MHz (např. BM 564)

Zdroj přesného kmitočtu (1, 10, 100 Hz; 1, 10, 100 kHz; 1, 10 MHz ±0,5 %).

Generátor obdélníkových impulsů s náběžnou hranou lepší než 1 ns s šiřkou asi 10 μ s a amplitudou asi 100 mV a výstupní impedancí 50 Ω

Nf sinusový generátor 20 Hz až 1 MHz

Milivoltmetr 10 Hz - 10 MHz (např. BM 512)

Statický voltmetr SLL – do 15 kV \pm 0,2 %

SS voltmetr (vstupní odpor > 1 M Ω , 1 V - 300 V)

Měřící přístroj DU20

9.3. Kontrola a nastavení stabilizovaných zdrojů nízkých napětí

Pří kontrole zdrojů nízkého napětí lze postupovat následovně: Kontrolovat zdroj +12 V pomocí digi-

Перед началом контроля или регулировки схем прогреть прибор в течение прибл. 20 мин при нормальной температуре (+23 °C).

При работе следует соблюдать все правила техники безопасности при работе с аппаратурой под напряжением.

9.2. Используемые измерительные приборы

Для контроля правильности установки прибора необходимо пользоваться приборами, параметры которых удовлетвотяют ниже приведенным требованиям:

Генератор ВЧ синусоидального сигнала (1 МГц — 120 МГц с постоянной амплитудой);

0,5 В эфф.

- Цифровой вольтметр 10 мВ 220 В ±0,5 % (напр. ВМ 533).
- Осциллоскоп с полосой пропускания не менее 0-90 МГц (напр. ВМ 564).
- Источник точной частоты (1, 10, 100 Гц, 1, 10, 100 кГц, 1, 10, 100 кГц, 1, 10 МГц ±0,5 %).
- Генератор прямоугольных импульсов с длительностью переднего фронта не более 1 нс с длительностью импульса прибл. 10 мкс и размахом прибл. 100 мВ при выходном сопротивлении 50 Ом.

Генератор синусоидального сигнала НЧ 20 Гц – 1 МГц.

- Милливольтметр 10 Гц 10 МГц (напр. ВМ 512).
- Статический вольтметр до 15 кВ ±0,2 % (напр. SLL).

Вольтметр постоянного тока (входное сопротивление > 1 МОм, 1 В – 300 В).

Измерительный прибор DU 20.

9.3. Контроль и регулировка стабилизированных источников низкого напряжения

При контроле источников низкого напряжения можно поступать следующим образом: контролировать источник +12 В с помощью цифрового

Before checking the performance of the instrument or before its repair and readjustment, it must be ke switched on for approximately 20 minutes at the refe rence temperature (+23 °C). When carrying out wo on the oscilloscope, all the safety measures conce ning instruments operating with high voltages must be adhered to.

9.2. Measuring instruments employed

For checking the correctness of the adjustment of the oscilloscope, it is necessary to employ instrument which have the properties given below:

- RF sinusoidal waveform generator of 1 MHz 120 MHz frequency range and of 0.5 V RMS of put voltage of constant amplitude.
- Digital voltmeter of 10 mV to 200 V range at +0.5 % accuracy (e.g. BM 533).
- Oscilloscope of at least 0 to 90 MHz frequency ran (e.g. BM 564).
- Precision frequency generator of 1, 10, 100 Hz. 1, 100 kHz, 1, 10 MHz, and of ±0.5 % accuracy.
- Square-wave generator with rising edge better th 1 ns, pulse duration approximately 10 μ s, amplitude approximately 100 mV, output impedan 50 Ω .

AF sinusoidal waveform generator of 20 Hz to 1 M frequency range.

- RF millivoltmeter of 10 Hz to 10 MHz frequency ran (e.g. BM 512).
- Static voltmetr of up to 15 kV measuring range a +0.2 % accuracy (e.g. SSL).
- DC voltmeter of > 1 M Ω input resistance and 1 V 300 V range.

Universal test meter DU 20.

9.3. Checking and adjustment of the stabilized LV supplies

The procedure for checking the correctness of ope tion of the built-in LV supplies is as follows: First of the +12 V supply has to be checked by means of tálního voltmetru (DVM); případně dostavit potenciometrem R70.

Kontrolovat ostatní stabilizovaná napětí (+80 V, -12 V, +5 V, +48 V), která jsou dána přesností odporových děličů a jsou v přesnosti ± 2 %.

Tabulka 1

U stab.	l jme- novité (mA)	Výstupní zvlnění (mV)	U _o jme- novité (V)	novité U _o	
+80 V	212	< 12	110	1,6	270
+12 V	575	< 10	20,0	1	1400
-12 V	710	< 12	21,0	1,6	850
+ 5 V	160	< 10	9,0	0,9	350
-1-48 V	260	< 8	68	1,2	385

вольтметра в случае необходимости произвести установку потенциометром R70.

Контролировать остальные стабилизированные напряжения (+80 В, -12 В, +5 В, +48 В), которые определяются точностью делений сопротивления, составляющей +2 %.

Таблица 1

Примечание:

U _{cta6.}	і _{ном} (мА)	Напря- жение пульса- ции (мВ)	U _о ном. (В)	Напря- жение U, (размах) пульсаций	I _{прадохр.} (MA)
+80 B	212	< 12	110	1,6	270
+12 B	575	< 10	20,0	1	1400
-12 B	710	< 12	21,0	1,6	850
+ 5 B	160	< 10	9,0	0,9	350
+48 B	260	< 8	68	1,2	385

Poznámka:

Stabilita napětí 0,1 % při kolisání síťového napětí o ± 10 %. Provést kontrolu stability.

9.4. Kontrola a nastavení zdroje vysokého napětí

Při kontrole zdroje vysokého napětí je důležité, aby byl osciloskop v provozu asi 20 min. a tudíž tepelně ustálen.

Kontrolu provést v těchto bodech:

$$U_{201} = -1950 \text{ V} \pm 1 \text{ \%}, U_{203} = +12 \text{ kV} \pm 3 \text{ \%}, U_t = 6.3 \text{ V} \pm 5 \text{ \%}$$

regulovatelné

$$U_{220} = -1980 \text{ V} \text{ až} -2050 \text{ V}.$$

Dále je třeba kontrolovat průběh napětí výkonového oscilátoru na kolektoru E200. Kontrolované Коэффициент стабилизации 0,1 % при изменении напряжения сети на ±10 %. Осуществить контроль стабильности.

9.4. Контроль и установка источника высокого напряжения

При контроле источника высокого напряженя важно, чтобы осциллоскоп работал не менее 20 минут и, следовательно, его температура была установившейся.

Контроль осуществить в следующих точках:

$$U_{201} = -1950 \text{ B} \pm 1 \%$$
, $U_{203} = +12 \text{ kB} \pm 3 \%$,
 $U_f = 6,3 \text{ B} \pm 5 \%$

с возможностью регулировки

$$U_{220} = -1980 \div -2050 \text{ B}.$$

Далее необходимо контролировать форму напряжения мощного автогенератора на коллекторе E200. Контролируемое напряжение должdigital voltmeter and, if necessary, readjusted by means of potentiometer R70.

Then, the other supplies of the stabilized voltages of +80 V, -12 V, +5 V and +48 V, which depend on the precision of the resistive dividers, have to be checked. Their accuracy must be $\pm 2 \%$.

Table 1

V _{s'at.}	Rated I (mA)	Output ripple (mV)	Rated V (no-load) (V)	No-load ripple (V _{բp})	Over- current protec- tion -(mA)
+80 V	212	< 12	110	1.6	270
+12 V	575	< 10	20.0	1	1400
—12 V	710	< 12	21.0	1.6	850
+ 5 V	160	< 10	9.0	0.9	350
+48 V	260	< 8	68	1.2	385

Note:

Voltage stability 0.1 % at ± 10 % mains voltage fluctuations. Check the stability.

9.4. Checking and adjustment of the HV supply

When the high-voltage supply is being checked, it is essential for the oscilloscope to have been in operation for approximately 20 minutes to ensure its thermal stabilization.

The test has to be carried out at the following points:

$$U_{201} = -1950 \text{ V} \pm 1 \text{ \%}, U_{203} = +12 \text{ kV} \pm 3 \text{ \%}$$

 $U_f = 6.3 \text{ V} \pm 5 \text{ \%}$

controllable

$$U_{202} = -1980 \text{ V to } -2050 \text{ V}$$

Further, it is necessary to check the waveform of the power oscillator on the collector of E200. The voltage should be of sinusoidal waveform of approximately napětí má být sinusové s maximálním zkreslením asi 10 % f \doteq 22 kHz.

Zkreslení oscilačního napětí parazitními zákmity lze odstranit vhodným nastavením potenciometru R154. Po tomto zásahu dostavit U₂₀₁ potenciomterem R140. Typická hodnota U_{B-E} je 1,4 až 1,8 V (značně závislá na β tranzistoru). V případě zkratu C–E jistí pojistka P140 – F 1 A umístěná na desce zesilovače "Z" a zesilovače regulační smyčky.

9.5. Nastavení vertikálního zesilovače (Y)

V důsledku změny parametrů součástek je třeba po určité době provést dostavení některých ovládacích prvků zesilovače.

9.5.1. Nastavení citlivosti a ss vyvážení

Výstupní zdířku kalibrátoru 40 mV propojíme kabelem se vstupním konektorem F1. Vstupní dělič S2 přepneme do polohy 0,01 V/díl, přepínač rychlostí časové základny A S11 přepneme do polohy 1 μ s/díl a funkční přepínač S4.1 do polohy A. Ovládací prvky kanálu A nastavíme do těchto poloh:

přepínač vstupu S1.1 do polohy "ss" a potenciometr plynulého zesílení R36 nastavíme do pravé krajní polohy "KAL".

Potenciometrem vertikálního posuvu R38 nastavíme obrázek na spodní rysku stínítka. Jestliže výška obrázku není 40 mm, dostavíme pomocí šroubováku potenciometrem nastavení citlivosti R37 umístěným na panelu výšku obrázku přesně 40 mm. Přepneme

но быть синусоидальным с максимальным КНИ прибл. 10 %, f = 22 кГц.

Если на сигнале автогенератора заметны выбросы, то необходимо сначала установить потенциометр R154 и снова проверить выходное напряжение U_{201} , которое можно установить с помощью R140. Типичное значение U_{B-E} составляет 1,4–1,8 В (сильно зависит от коэффициента β транзистора). В случае короткого замыкания С–Е срабатывает предохранитель P140–F1A, установленный на плате усилителя «Z» и усилителя петли регулирования.

9.5. Регулировка усилителя вертикального отклонения (Y)

В результате изменения параметров деталей необходимо после определенного времени произвести установку некоторых элементов управления усилителя.

9.5.1. Установка чувствительности и балансировка по постоянному току

Выходной зажим калибратора 40 мВ соедининить кабелем со входным гнездом F1. Входной делитель S2 перевести в положение 0,01 В/см, переключатель скорости развертки генератора A S11 перевести в положение 1 мкс/дел. и переключатель режима работы S4.1 перевести в положение А. Элементы управления канала A установить в следующие положения:

переключатель входа S1.1 в положение — потенциометр плавной регулировки усиленя R36 установить в правое крайнее положение «КАЛ.».

Потенциометром вертикального смещения R38 установить осциллограмму по нижней риске экрана. Если размер осциллограммы по вертикали не равен 40-мм, то его следует установить с помощью отвертки потенциометром установки чувствительности R37, расположенным на

maximum 10 % distortion at approximately 22 kH

The distortion of the oscillating voltage caused b spurious beats can be removed by suitable adjustin of the potentiometer R154. After this, U₂₀₁ has to readjusted with potentiometer R140. A typical valu of the voltage between the base and emitter is 1.4⁻ 1.8 V (depending greatly on the β of the transistor). In the case of a short circuit between the collector at the emitter, the fuse P140 – F 1 A becomes operative; this fuse is housed on the board of the Z-amplific and control loop.

9.5. Adjustment of the amplifiers

Natural ageing of components and the consequence of the amplifiers necessing the readjustment of their controls.

9.5.1. Adjustment of the sensitivity and DC balancing

The output socket "40 mV" of the calibrator has to interconnected with the input connector F1 by mea of a screened cable. The input attenuator S2 has be set to the position "0.01 V/div.", the speed set to S11 of time base A to the position "1 μ s/div." a the functin selector S4.1 to the position "A". The cat trols of channel A have to be set as follows:

The input selector S1.1 to the position ______a the potentiometer R36 for continuous amplificat control to its extreme clockwise position, mark "CAL."

The image on the CRT screen has to be set to bottom line of the graticule by means of the vert shift potentiometer R38. If the height of the image not 40 mm, then the potentiometer R37 for sensiti adjustment has to be adjusted with a screwdrig Then the switch S1.2 has to be changed-over to přepínač S1.2 do polohy "0" a zjistíme, zda při přepínání děliče nedochází k posuvu stopy na stínítku. Nežádoucímu posuvu zamezíme dostavením potenciometru-vyrovnání nuly R35.

Funkční přepínač S4.1 přepneme do polohy B a provedeme případná dostavení citlivosti kanálu B dostavným prvkem R137 a vyrovnání nuly prvkem R135. панели. Установить размер осциллограммы точно 40 мм. Переключатель S1.2 перевести в положение «0» и убедиться в том, что при переключении делителя нет смещения линии развертки на экране. Нежелательное смещение устраняется установкой потенциометра подстройки нуля R35.

Переключатель режима работы S4.1 перевести в положение В и осуществить установку чувствительности канала В с помощью подстроечного элемента R137 и произвести компенсацию нуля элементом R135. position "0" in order to ensure that altering of the setting of the input divider does not cause drifting of the trace over the CRT screen. Unwanted drift can be prevented by readjusting the zero balancing potentiometer R35.

After altering the setting of the function selector S4.1 to "B", the sensitivity of channel B has to be readjusted, if necessary, by means of R137 and zero balancing potentiometer R135.

9.5.2. Kontrola kompenzace vstupních děličů

Výstupní zdířku kalibrátoru 40 mV propojíme kabelem se vstupním konektorem F1. Dělič S2 přepneme do polohy 0,01 V/díl, rychlost časové základny přepneme do polohy 1 ms/díl. Funkční přepínač do polohy A, přepínač vstupu S1.1 do polohy ,,ss". Případný překmit nebo zaoblení obdélníků dostavíme kondenzátorem C4. Dělič S2 přepneme do polohy 0,1 V/cm, propojíme zdířku kalibrátoru 400 mV a případné dostavení provedeme kondenzátorem C6. Dělič S2 přepneme do polohy 1 V/cm, propojíme zdířku kalibrátoru 4 V a dostavení provedeme kondenzátorem C5.

Funkční přepínač přepneme do polohy B, ostatní prvky shodně s nastavením kanálu A. Základní rozsah 0,01 V/díl dostavíme kondenzátorem C204, rozsah 0,1 V/díl dostavíme kondenzátorem C106 a rozsah

1 V/díl dostavíme kondenzátorem C105.

9.5.2. Контроль компенсации входных делителей

Выходной зажим калибратора 40 мВ соединить кабелем со входным гнездом F1. Делитель S2 перевести в положение 0,01 В/дел., скорость развертки установить 1 мс/дел. Переключатель режима работы перевести в положение А, переключатель входа S1.1 — в положение _____ Выброс или падение вершины импульса установить конденсатором С4. Делитель S2 перевести в положение 0.1 В/см. сигнал снять с гнезда калибратора 400 мВ и нужную установку осуществить конденсатором С6. Делитель S2 перевести в положение 1 В/см, соединить зажим калибратора 4 В со входом и осуществить установку конденсатором С5. Переключатель режима работы перевести в положение В, остальные элементы установлены аналогично установке элементов канала А. Установка основного предела 0,01 В/см осуществляестя конденсатором С204, установка предела 0,1 В/см осуществляется конденсатором С106 и установка предела 1 В/см осуществляется конденсатором C105.

9.5.2. Checking the compensation of the input attenuators

The output socked "40 mV" of the calibrator has to be interconnected with the input connector F1. The attenuator S2 has to be set to the position "0.01 V/div.", the speed selector S11 of time base A to the position "1 ms/div.". The function selector S4.1 has to be set to the position "A" and the input selector S1.1 to the position _____. If the display exhibits an overshoot, or the rectangles are rounted, then the capacitor C4 will have to be readjusted. Then, the attenuator S2 has to be switched over to the position "0.1 V/div." with the socket "400 mV" of the calibrator connected. Readjustment, if necessary, can be carried out by means of capacitor C6. Finally, the attenuator S2 has to be set to the position "1 V/div." and the socket "4 V" of the calibrator connected to the input connector F1. The capacitor C5 serves for readjustment. The function selector S4.1 has to be changed-over to the position "B"; all the other controls remain set as for adjusting channel A. The basic range 0.01 V/div. has to be readjusted, if necessary, with the capacitor C204, the range 0.1 V/div. with the capacitor C106, and the range 1 V/div. with the capacitor C105.

9.5.3. Kontrola přenosových vlastnostní

Funkční přepínač S4.1 v poloze A, přepínač citlivosti S2 v poloze 0,01 V/díl, regulátor plynulé změny citlivosti R36 v poloze "KAL.".

Na vstup F1 kanálu A přivedeme přes zakončovací odpor obdélníkové napětí 30-40 mV z generátoru impulsů s náběžnou hranou ≦ 1 ns.

Zkontrolujeme dobu zpoždění náběžné hrany impulsu, která je ≤ 2,9 ns. Pro hodnocení náběžné hrany impulsu se nezapočítává doba překmitu, pokud je delší než doba náběhu hrany impulsu. Pokud je doba překmitu srovnatelná s dobou náběhu hrany impulsu, je nutné tuto dobu započítávat.

Obdobným způsobem provedeme kontrolu kanálu B. Jestliže nesouhlasí zpoždění náběžné hrany impulsu se zaručovanou hodnotou nebo na impulsu jsou překmity, případně podkmity větší než je povoleno, lze provést dostavení optimálního tvaru prvky R5, R25, R24, C2, C14, R55, C52, R89, C63, C104, C1, R6, C6, R252, R255, R289, C263, R312, C269, přístupnými po sejmutí bočního krytu. Toto dostavení je však výhodnější svěřit opravně.

9.5.4. Kontrola kmitočtové charakteristiky

Přepínač funkce S4.1 v poloze "A". Rozsah citlivosti "0,01 V/díl". Potenciometr plynulé změny citlivosti v pravé krajní poloze. Na vstup "A" přivedeme přes π dělič 1 : 5 o impedanci 50 Ω a zakončovací odpor 50 Ω sinusové napětí z generátoru o výstupním odporu

9.5.3. Контроль передаточных параметров

Переключатель режима работы S4.1 находится в положении А, переключатель чувствительности S2 — в положении 0,01 В/дел., регулятор плавной установки чувствительности R36 в положении «Кал».

На вход F1 канала A подать через нагрузочное сопротивление напряжение прямоугольной формы 30—40 мВ с выхода генератора импульсов, обладающих длительностью переднего фронта ≤ 1 нс.

Проконтролировать время задержки переднего фронта чмпульса, которое должно быть ≦ 2,9 нс. Для оценки переднего фронта импульса не учитываеться время выброса, если оно больше времени длительности импульса. Если время выброса сравнимо со временем длительности переднего фронта импульса, то его необходимо принять во внимание.

Аналогичным образом осуществляется контроль канала В. Если задержка переднего фронта импульса не соответствует гарантируемому значению или на импульсе имеются выбросы или отрицательные выбросы больше, чем допускаются, то можно осуществить установку оптимальной формы сигнала элементами R5, R25, R24, C2, C14, R55, C52, R89, C63, C104, C1, R6, C6, R252, R255, R289, C263, R312, C269, доступными после снятия боковой крышки. Однако, рекомендуется передать прибор для установки ремонтной мастерской.

9.5.4. Контроль частотной характеристики

Переключатель режима 64.1 в положении «А». Чувствительность установлена 0,01 В/дел. Потенциометр плавной регулировки чувствительности находится в правом крейнем положении. На вход «А» подается через *π*-образный делитель 1 : 5 с сопротивлением 50 Ом и нагру-

9.5.3. Checking the transfer properties

The function selector S4.1 has to be set to "A", the sensitivity selector S2 to the position "0.01 V/div.", and the continuous sensitivity control potentiometer R36 to "CAL.".

A rectangular voltage of 30 to 40 mV and rising edge \leq 1 ns, drawn from the pulse generator, has to be applied to input F1 of channel A via a terminating resistor.

The delay of the rising edge, which is ≤ 2.9 ns. has to be checked. In the evaluation of this rising edge, the duration of the overshoot is not taken into consideration, provided it is longer than the rising edge of the rectangular pulse. However, if the duration of the overshoot is comparable with that of the pulse risin edge, then this duration must be reckoned with.

The transfer properties of channel B have to b checked in a similar way. If the delay of the rising ed ge of the pulse does not tally with the guaranteed va lue, or if overshoots are perceptible on the pulse, o undershoots (if any) are larger than as specified, the optimum pulse shape can be adjusted by means o controls which become accessible after taking off th side cover of the oscilloscope. These controls are a follows: R5, R25, R24; C2, C14, R55, C52, R89, C6 C104, C1, R6, C6, R252, R255, R289, C263, R31 and C269. However, it is recommended to entru such a readjustment to the makers' Service Organization.

9.5.4. Checking the frequency response

With the function selector S4.1 set to "A", the sensitivity range "0.01 V/div." has to be selected. The potentiometer for continuous sensitivity control has to be set fully clockwise. A sinusoidal waveform voltage drawn from the generator of 50 Ω output impedance.

50 Ω. Napětím generátoru nastavíme při kmitočtu asi 3 MHz na stínítku obrázek o velikosti 40 mm. Pozvolna měníme kmitočet generátoru a sledujeme amplitudu signálu na stínítku. Kmitočtová charakteristika by měla dosáhnout dovolený pokles –3 dB na kmitočtu 120 MHz.

Obdobným způsobem zkontrolujeme kanál B.

9.6. Nastavení časové základny

9.6.1. Pro kontrolu činnosti elektrických obvodů je třeba používat měřicí přistroje, jejichž vlastnosti vyhovují uvedeným požadavkům.

9.6.2. Kontrola a nastavení rychlostí časových základen

Toto nastavení musí být prováděno s přístrojem, u něhož byla zkontrolována přesnost napájecích zdrojů. Před započetím nastavování musí být přístroj minimálně 30 minut v provozu. Na vstup vertikálního zesilovače přiveďte průběh o kmitočtu 1 kHz ±0,5 %. Ovládací prvky základny nastavte takto:

přepínač funkcí S4.1 – do polohy A

přepínač rychlostí A S11 - do polohy 1 ms/díl

tlačítko synchronizace A -- S9.5 do polohy ..AUT"

tlačítko synchronizace B -- S9.1 do polony "AUT" зочное сопротивление 50 Ом синусоидальное напряжение генератора с выходным сопротивлением 50 Ом. Напряжение генератора устанавливателя таким, чтобы на частоте прибл. 3 МГц размер осциллограммы на экране составлял 40 мм. Медленно изменять частоту генератора и сделить за размахом сигнала на экране. Частотная характеристика должна обладать допустимым завалом — 3 дБ на частоте 120 МГц. Аналогично контролируется канал Б.

9.6. Установка генератора развертки

9.6.1. Для контроля работы электрических схем необходимо использовать измерительные приборы, параметры которых удовлетворяют нижеприведенные требования.

9.6.2. Контроль и установка скорости развертки

Условием осущестленя установки является проведение проверки точности источников питаня. Перед началом регулировки прибор должен прогреваться не менее чем 30 минут. На вход усилителя вертикального отклонения подать сигнал частотой 1 кГц ±0,5 %. Элементы управления генератора развертки установить следующим образом:

- переключатель режима работы S4.1 в положение А переключатель скорости (A) S11 — в положение 1 мс/деление кнопка синхронизации (A) S9.5 — в положение ABT. кнопка синхронизации (B) S9.1 — в по-
- ложение АВТ.

has to be applied to input "A" over a π divider of 1 : 5 ratio and of 50 Ω impedance via a terminating resistor of 50 Ω . At a frequency of approximately 3 MHz, the height of the waveform displayed on the CRT screen has to be set to 40 mm by suitably altering the output voltage of the generator. The frequency of the generator has to be altered slowly and the height of the display observed. The permissible amplitude drop of -3 dB should be reached by the frequency response at 120 MHz.

The frequency response of channel B has to be checked in the same manner.

9.6. Adjustment of the time base

9.6.1. For checking the operation of the electrical circuits, measuring instruments have to be

employed, such as a DČ voltmeter, an RF generator, etc., the properties of which meet the requirements given in Section 9.2 of this Instruction Manual.

9.6.2. Checking and adjustment of the time base speeds

This adjustment can be carried out only on such an oscilloscope, the power supplies of which have been previously checked and found to be correct. Before starting the adjustment, the oscilloscope must be kept under power for at least 30 minutes. A waveform of a frequency of 1 kHz ± 0.5 % must be applied to the input of the vertical amplifier. The time base controls have to be set as follows:

Function selector S4.1 - To position "A"

- Speed selector (A) S11 To position "1 ms/ /div."
- Synchronization push-button (A) S9.5 To position "AUT."
- Synchronization push-button (B) S9.1 To position "AUT."

tlačítko synchronizace - S9.7 do polohy "INT"

tlačítko 1× (S8.4) do nestlačené polohy

tlačítko lupy (S7) do polohy 1imes

Při otáčení potenciometrem "ZPOŽDĚNÍ" z polohy 1.0 do polohy 9.0 nastavte zdvih jasové značky přesně na 8 dílků rastru. Případnou chybu dostavte potenciometrem R16 v horizontálním zesilovači. Po tomto nastavení otočte přepínač rychlostí B do polohy "VYP".

Potenciometrem R178 nastavte rychlost základny tak, aby 10 průběhů obdélníku (1 ms) odpovídalo přesně 10 dílkům rastru.

Při kontrole obou základen v rozsahu 0,5 s/díl až 10 μ s/díl se řiďte údaji v tabulce 2.

кнопка синхронизации S9.1 — в положение ВНУТР.

кнопка 1×S8.4 – в ненажатое положение

кнопка S7 — в положение 1×

При вращении потенциометра ЗАДЕРЖКА из положения 1,0 в положение 9,0 установить ход метки повышенной яркости на точно 8 делений растра. Обнаруженную погрешность устранить потенциометром R16 в усилителе горизонтального отклонения. Затем перевести переключатель скорости равзертки В в положение

ВЫКЛ. Потенциометром R178 установить скорость развертки так, чтобы 10 периодов прямоугольного сигнала (1 мс) соответствовало точно 10 делениям растра.

ниям растра. При контроле обоих генераторов развертки в пределах 0,5 с/деление — 10 мкс/деление необходимо руководствоваться данными таблицы 2. Synchronization push-button S9.7 – To position "INT." Push-button "1×" (S8.4) to undepressed position

tion Push-button "MAGN." (S7) - To position "1X"

By turning the potentiometer "DELAY" slowly for the position "1.0" to the position "9.0", the amplitud of the brightness signal has to be set exactly to mea sure 8 division lines on the graticule. An error, if an can be corrected with potentiometer R16 of the hor zontal amplifier. After this adjustment has been com pleted, the speed selector "B" has to be set to "OFF

The speed of the time base has to be adjusted b means of potentiometer R178 so that 10 rectangul waveforms (1 ms) take up exactly 10 division lines the graticule.

For checking the two time bases within the range 0.5 s/div. to 10 μ s/div.", the data given in the following Table apply:

			1	цы 2.			Table 2.		j
				Таблица 2	I	· · · · · · · · · · · · · · · · · · ·			Number of
Tabulka 2 Poloha j ČA	přepínače S/díl	Kalibrační kmitočet	Počet dílků rastru na jeden průběh	Положение переключателя время/деление	Калибровоч- ный сигнал	Количество делений растра на один период сигнала	Setting of the "TIME/DIV." selector	Calibrating cycle	graticule divisions per cycle
						0,2	0.5 s/div.	10 Hz 10 Hz	0.2 0.5
20 10 5 2 1 0, 0	2 s/dil ms/dil ms/dil ms/dil ms/dil ms/dil 5 ms/dil 2 ms/dil 1 ms/dil µs/dil µs/dil µs/dil	10 Hz 10 Hz 10 Hz 10 Hz 100 Hz 100 Hz 1 kHz 1 kHz 1 kHz 1 kHz 10 kHz 10 kHz 10 kHz 100 kHz 100 kHz	0,2 0,5 1 2 0,5 1 2 0,5 1 2 0,5 1 2 0,5 1 2 0,5 1	0,5 с/деление 0,2 с/деление 0,1 с/деление 50 мс/деление 20 мс/деление 5 мс/деление 2 мс/деление 0,5 мс/деление 0,2 мс/деление 0,1 мс/деление 50 мкс/деление 20 мкс/деление	10 Fu 10 Fu 10 Fu 10 Fu 100 Fu 1 KFu 1 KFu 1 KFu 10 KFu 10 KFu 100 KFu 100 KFu	0,5 1 2 0,5 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 s/div. 0.1 s/div. 50 ms/div. 20 ms/div. 5 ms/div. 2 ms/div. 2 ms/div. 0.5 ms/div. 0.2 ms/div. 0.1 ms/div. 50 μs/div. 10 μs/div.	10 Hz 10 Hz 10 Hz 100 Hz 1 kHz 1 kHz 1 kHz 1 kHz 10 kHz 10 kHz 10 kHz 100 kHz 100 kHz	1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 1

62

9.6.3. Nastavení lupy

Přepínač rychlostí A – S11 – nastavte do polohy 1 ms/díl, na vstup vertikálního zesilovače přiveďte kmitočet 10 kHz ± 0.5 % a tlačítko "LUPA" nastavte do polohy "10ד. Potenciometrem R18 v horizontálním zesilovači nastavte rychlost tak, aby 10 průběhů odpovídalo 10 dílkům rastru.

9.6.4. Nastavení nejvyšších rychlostí

Pro nastavení rychlosti rozsahů 5 μ s/díl až 0,05 μ s/díl použijte údajů tabulky 3.

Tabulka 3

Poloha přepínače ČAS/díl	Kalibrační kmitočet	Počet díl- ků rastru na 1 prů- běh	Dostavovací prvek A B		
5 μ s/díl 2 μ s/díl 1 μ s/díl	100 kHz 1 MHz 1 MHz	2 0,5 1	C 207 C 188		
0,5 μs/díl 0,2 μs/díl 0,1 μs/díl 0,05 μs/díl	1 MHz 10 MHz 10 MHz 10 MHz 10 MHz	2 0,5 1 2	C 208 C 189		

9.6.5. Nastavení symetrie synchronizačních obvodů

Potenciometr ÚROVEŇ – nastavte do středu dráhy.

Ovládací prvky nastavte takto:

přepínač funkcí S4.1 do polohy A

tlačitko synchronizace S9.7 do polohy "INT"

9.6.3. Установка лупы

Переключатель скорости A S11 установить в положение 1 мс/деление, на вход усилителя вертикального отклонение подать сигнал частотой 10 кГц \pm 0,5 % и кнопка «ЛУПА» устанавливается в положение «10×». Потенциометром R18 усилителя горизонтального отклонения установить скорость развертки так, чтобы 10 периодов сигнала соответствовало 10 делениям растра.

9.6.4. Установка максимальных скоростей

Частота ка-

либровки

100 кГц

1 MΓu

1 ΜΓu

1 МГц

10 MFu

10 MFu

10 MFu

Для установки скорости развертки 5 мкс/деление — 0,05 мкс/деление необходимо пользоваться таблицей 3.

> Количество де-

лений

растра

на 1 период

2

1

2

1

2

0,5

0,5

Установочный

элемент

в

C 188

C 189

Α

c 207

C 208

Положение пе-

реключателя

время/деление

мкс/деление

мкс/деление

мкс/деление

0,5 мкс/деление

0.2 мкс/деление

0.1 мкс/деление

0.05 мкс/деление

9.6.3. Setting the time magnification

The speed selector S11 of time base A has to be set to the position "1 ms/div." and a frequency of 10 kHz ± 0.5 % has to be applied to the input of the vertical amplifier. With the push-button "MAG." set to the position "10×", the speed has to be adjusted by means of potentiometer R18 in the horizontal amplifier so that 10 cycles correspond exactly to 10 divisions on the graticule.

9.6.4. Adjustment of the highest speeds

The speeds within the range "5 μ s/div. to 0.05 μ s//div." have to be adjusted according to the data given in the following Table:

Table 3	6

Setting of the "TIME/DIV." selector	Calibrating frequency	Number of grati- cule divisions per cycle	Adjusting element A B		
5 μ s/div. 2 μ s/div. 1 μ s/div.	100 kHz 1 MHz 1 MHz	2 0.5 1	C 207	C 188	
0.5 μs/div. 0.2 μs/div. 0.1 μs/div. 0.05 μs/div.	1 MHz 10 MHz 10 MHz 10 MHz 10 MHz	2 0.5 1 2	C 208	C 189	

9.6.5. Установка симметрии цепей синхронизации

Потенциометр УРОВЕНЬ установить в среднее положение.

Элементы управления установить следующим образом:

переключатель режима работы S4.1 — в положение А

кнопка синхронизации S9.7 — в положение «ВНУТР.»

9.6.5. Adjustment of the symmetry of the synchronizing circuits

The potentiometer "LEVEL" has to be set to the centre of its track.

The controls have to be set as follows:

Function selector S4.1 - To position "A"

Synchronization push-button S9.7 -- To position "INT."

tlačitko synchronizace S9.8 do polohy "ST"

tlačítko synchronizace S9.6 do polohy ,,+"

Na vstup vertikálního zesilovače připojte sinusový signál o kmitočtu asi 1 kHz z NF generátoru. Potenciometr R124 nastavte tak, aby bod spuštění časové základny byl v polovině vzestupné části sinusového průběhu.

Obdobně postupujte i u základny B, dostavení proveďte potenciometrem R18.

9.6.6. Nastavení intenzity přisvětleného úseku

Tlačítko S9.5 přepněte do polohy AUT. Přepínač funkcí přepněte do polohy A.

Přepínač ČAS/díl (A) přepněte do polohy 1 ms/díl.

Přepínač ČAS/díl (B) přepněte do polohy 0,1 ms/díl.

Přepínač synchronizace (B) S9.1 přepněte do polohy AUT.

Potenciometr ZPOŽDĚNÍ JEMNĚ na 5. dílek stupnice.

Potenciometrem R27 v řídicím obvodu nastavte intenzitu jasu přisvětleného úseku na hodnotu nejvhodnější k pozorování.

10. POKYNY PRO OPRAVY

10.1. Sejmutí krytů

Přístroj je zakrytován třemi kryty na sobě závislými, to znamená, že kryty je nutno demontovat v následujícím pořadí: spodní kryt – horní kryt – zadní kryt. кнопка синхронизации S9.8 — в положение «ПЕРЕМ.»

кнопка синхронизации S9.6 - в положение «+»

На вход усилителя вертикального отклонения подать синусойдальный сигнал частотой прибл. 1 кГц с выхода генератора НЧ. Потенциометр R124 установить так, чтобы точка запуска генератора развертки находилась в половине подходящей частки кривой синусоидального сигнапа.

Аналогично поступают и в случае генератора В, причем установка осуществляется потенциометром R18.

9.6.6. Установка яркости подсвечиваемого участка

Кнопку S9.5 перевести в положение ABT. Переключатель режима работы перевести в положение A.

Переключатель ВРЕМЯ/деление (А) перевести в положение 1 мс/деление.

Переключатель ВРЕМЯ/деление (В) перевести в положение 0,1 мс/деление.

Переключатель синхронизации (В) S9.1 перевести в положение ABT.

Потенциометр ЗАДЕРЖКА ТОЧНО установить по 5-му делению шкалы.

Потенциометром R27 в схеме управления установить подходящую для наблюдения яркость подсвеченного участка.

10. УКАЗАНИЯ ПО РЕМОНТУ

10.1. Снятие крышек

Прибор закрыт тремя крышками, сопряженными друг с другом. Это значит, что их следует демонтировать в следующей последовательности: нижняя крышка — верхняя крышка — задняя крышка. Synchronization push-button S9.8 - To post tion "AC"

Synchronization push-button S9.6 - To post tion "+"

A sinusoidal signal of approximately 1 kHz frequence drawn from the AF generator, has to be applied to the input of the vertical amplifier. The triggering point the time base has to be set to half the height of the sing part of the sinusoidal waveform by means of the potentiometer R124.

The same procedure has to be applied for time bas B; the potentiometer R18 serves for the adjustment

9.6.6. Adjustment of the intensity of the trace section with increased brightness

The controls have to be set as follows:

Push-button S9.5 - To position "AUT."

Function selector S4.1 – To position "A"

Selector "TIME/DIV." (A) - To position "1 ms/div."

Selector "TIME/DIV." (B) - To position "0.1 ms/div

Synchronization push-button (B) S9.1 - To position

Potentiometer "DELAY FINE" - To the 5th division ne on the scale.

The brightness of the section of increased intensit has to be adjusted by means of potentiometer R27 the control circuit, to an amplitude which is the mosuitable for observation.

10. INSTRUCTIONS FOR REPAIRS

10.1. Removal of the covers

The BM 566A oscilloscope has three separate d vers, which, if necessary, must be taken off in the following order:

Bottom cover, top cover and back cover.

Demontáž spodního krytu se provede povolením dvou šroubů na spodní straně přístroje a dvou šroubů u čepu držadla. Po sejmutí dolního krytu jsou zpřístupněny čtyři šrouby horního krytu, umístěné v bočních podélných nosnících.

Zadní kryt lze demontovat teprve po sejmutí obou předních krytů. Dva šrouby upevňují kryt na bočních podélných nosnících, další dva jsou přístupny po vyjmutí gumových vložek v nožkách přístroje.

10.2. Výměna součástí

Při výměně součástí na deskách s plošnými spoji není dovoleno pájení součástí ze strany fólie, ale je nutno postupovat tímto způsobem:

Vadnou součást odštípneme tak, aby délka vývodu nad tištěnou deskou byla co nejdelší. Tuto zbylou část co nejdokonaleji očistíme a na ni připájíme novou součást. Při výměně součástí je nutno dbát, abychom nemuseli pájet dlouho nebo vícekrát, aby nedošlo k uvolnění měděné fólie. Při vícenásobném zničení stejné součásti je vhodné zaslat přístroj do výrobního podniku k opravě.

10.3. Výměna tranzistorů

Tranzistory v objímkách je možno vyměnit pouhým vysunutím z objímky. Při zpětném zasunutí je nutno dbát na to, aby nedošlo k nesprávnému zasunutí (orientační výstupky na objímce i na tranzistoru se musí krýt). Před vytažením FE tranzistorů je nutno vývody tranzistorů zkratovat pérky. Při zpětné montáži je možno pérka odstranit až po nasunutí tranzistorů do objímek.

Демонтаж нижней крышки осуществляется путем ослабления двух винтов на нижней стороне прибора и двух винтов цапфы ручки. После снятия нижней крышки доступны четыре винта верхней крышки расположенные в боковых продольных держателях.

Заднюю крышку можно демонтировать только после снятия обеих предшествующих крышек. Два винта, крепящие крышку на боковых продольных держателях, и остальные два винта доступны после вынимания резиновых вкладышей из ножек прибора.

10.2. Замена деталей

При замене деталей на платах печатного монтажа не допускается паять детали со стороны фольги, а необходимо поступать следующим образом:

Негодную деталь «откусить» так, чтобы длина вывода над печатной платой была максимальной. Оставшийся вывод детали тщательно очистить и к нему припаять новую деталь. При замене деталей необходимо следить за тем, чтобы не нужно было паять продолжительное время или несколько раз во избежание ослабления медной фольги. При повторном выходе из строя одного и того же элемента целесообразно отправить прибор на ремонт на завод-изготовитель.

10.3. Замена транзисторов

Транзисторы в панелях можно заменять путем их простого выдвижения из панели. При повторном задвижении необходимо следить за правильной ориентировкой выводов (ключ транзистора должен совпадать с ключом панели. Перед выдвижением полевых транзисторов необходимо выводы транзисторов закоротить пружинами. При повторном монтаже можно пружины устранять только после установки транзисторов в панелях. When taking off the bottom cover plate, two screws in the bottom and two screws at the hinges of the handle have to be removed. After taking off the bottom cover, the four screws of the top cover, which are in the longitudinal side laths, become accessible.

The back cover can be removed only after the other two covers have been taken off. Two screws attach this cover plate to the longitudinal side laths: a further two screws become accessible after taking out the rubber inserts from the feet of the instrument.

10.2. Exchange of components

When a component mounted on a printed circuit board has to be exchanged, the soldering must not be carried out on the side with the metal foil; the correct procedure is as follows:

A defective component must be cut off so that the remnants of its wire terminals soldered to the board are as long as possible. These remnants must be cleaned thoroughly and the new component soldered to them. Care must be taken not to prolong the soldering, nor to solder repeatedly, so as to prevent peeling-off of the copper foil.

If the same component becomes damaged repeatedly, it is advisable to send the instrument for repair to the makers' Service Organization.

10.3. Exchange of transistors

Transistors which are socket-mounted can be exchanged readily simply by pulling them out of their sockets. Whenever a new transistor is being inserted, care must be taken to avoid incorrect connection (the markings on the socket and on the transistor must tally). Before removing a FET-type transistor, its outlets must be short-circuited. The short-circuiting spring must be taken off only after the FET has been inserted fully into its socket.

10.4. Výměna integrovaných obvodů

Integrované obvody jsou podobně jako tranzistory zasunuty do objímek a lze je tedy vyjmout pouhým vytažením. Při zpětném zasouvání do objímky je nutno dbát, aby orientační trojúhelník vyleptaný v desce byl proti zářezu na pouzdru integrovaného obvodu.

10.5. Demontáž knoflíků

Knoflíky lze vyměnit nebo znovu dostavit do správné polohy tím, že z knoflíku vytáhneme bílou krycí čepičku a povolíme nebo přitáhneme šroub, který je uvnitř.

10.6. Výměna a demontáž prvků umístěných na panelu

Při demontáži, opravě nebo výměně ovládacích prvků umístěných na panelu je nutno nejdříve provést demontáž knoflíků.

Dále je nutno demontovat veškeré vstupní a výstupní zdířky.

Tím se nám podaří uvolnit štítek, pod kterým jsou ukryty upevňovací prvky pro díly umístěné na panelu.

10.7. Složitější opravy

Přístroj je výrobcem podroben přísné kontrole kvality součástí a nastavení obvodů. Vývojovému a výrobnímu procesu je věnována velká péče a v řadě případů je používáno speciálních technologických procesů, které mají zajistit udržení vlastnosti přístroje a dosažení odpovídajících přesností.

Přesto však během provozu vlivem stárnutí součástí, působením klimatických podmínek a event. jiných vlivů se může vyskytnout závada, jež poruší funkci přístroje.

Přiložená schémata zapojení Vám usnadní pochopení principu, usnadní případné opravy a zajistí Vám rychlou orientaci v zapojení.

10.4. Замены интегральных микросхем

Интегральные микросхемы аналогично транзисторам вставлены в панелях и их можно вынимать путем простого выдвижения. При повторном задвижении в панель следует следить за те, чтобы ключ на корпусе интегральной микросхемы был направлен к треугольному индексу на плате печатного монтажа.

10.5. Демонтаж ручек

Ручки можно заменить или установить в правильное положение, для чего следует снять белый защитный колпачок и ослабить или затянуть винт, расположенный внутри.

10.6. Замена и демонтаж элементов, расположенных на панели

При демонтаже, ремонте или замене элементов управления, расположенных на панели, необходимо сначала демонтировать ручки.

Далее необходимо демонтировать все входные и выходные зажимы. В результате этого можно ослабить щиток панели, под которым расположены крепежные элементы деталей, расположенных на панели.

10.7. Более сложные виды ремонта

На заводе-изготовителе прибор подвергается строгому контролю качества деталей и регулировки схем. Процессу разработки и производства уделяется большое внимание и в ряде случаев используются специальные технологические процессы с целью обеспечения сохранения параметров прибора и достижения требуемой точности.

Несмотря на это, в процессе эксплуатации из-за старения деталей, воздействия климатических условий и т. д. может появиться неисправность, которая нарушает работоспособность прибора.

10.4. Exchange of integrated circuits

The integrated circuits are mounted similarly as the socket-mounted transistors, and thus can be removed easily simply by pulling them out. When these circuits are being reinserted, the triangular mark etches in the metal foil of the board must be against the groove in the sleeve of the integrated circuit.

10.5. Removal of the control knobs

A knob of the instrument can be exchanged or rese to the correct position after removing the while covering cap, and loosening or tightening the screen inside it.

10.6. Exchange and removal of panel controls

When a panel control has to be removed for repair exchange, first of all its knob has to be taken off.

Then, it is necessary to remove all the input and out put sockets and connectors.

Thus, the front shield becomes free and can be take off in order to make the fixing screws of the pane controls accessible for removal.

10.7. More involved repairs

The BM 566A oscilloscope has been submitted by the makers to stringent tests of the quality of the employ ed components and the precision of circuit adjust ment. The greatest possible care has been devote in the development and production processes in or der to attain the required properties of the instrument and the corresponding high accuracy. However, after lengthy operation, due to natural ageing of components, or to atmospheric and climatic conditions, a well as to other possible adverse influences, a defer may occur which could impair correct operation of the oscilloscope. Při výměně vadných součástí používejte pouze typy, které jsou uvedeny v rozpisu el. součástí.

V duchu dobré tradice má k. p. TESLA Brno zájem na tom, aby jeho měřicí přístroje sloužily s maximální přesností zákazníkům. Nemáte-li proto při opravě vhodné kontrolní zařízení nebo dostatek zkušeností, doporučujeme Vám obrátit se na výrobní podnik, který Vám přístroj opraví.

Přístroj zašlete na adresu:

TESLA Brno, koncernový podnik, 612 45 Brno, Purkyňova 99 Adresa servisu měřicích přístrojů (pro osobní styk): TESLA Brno, koncernový podnik, servis měřicích přístrojů, 612 45 Brno, Mercova 8a (tel. 74 75 74)

11. POKYNY PRO DOPRAVU A SKLADOVÁNÍ

11.1. Doprava

Konstrukce obalu je řešena s ohledem na snížení nepřímých vlivů během dopravy. Dopravu lze uskutečňovat všemi dopravními prostředky. Přístroj však musí být chráněn proti přímým povětrnostním vlivům a působení teplot nižších než −25 °C a vyšších než +55 °C. Krátkodobé zvýšení vlhkosti nemá na vlastní přístroj vliv.

11.2. Skladování

Nezabalený přístroj lze skladovat v prostředí s teplotou +5 °C až +40 °C při maximální relativní vlhkosti

При замене вышедших из строя деталей следует использовать только типы, указанные в спецификации электрических деталей. Приложенные электрические схемы и чертежи плат печатного монтажа облегчат понять принцип действия и устранить возможные несправности.

В соответствии с хорошей традицей концерновое предприятие «Тесла» Брно заинтересовано в том, чтобы его измерительные приборы служили заказчику с максимальной точностью. Поэтому, если в Вашем распоряжении нет подходящего контрольного оборудования или достаточного опыта, то рекомендуется обратиться с ремонтом на завод-изготовитель.

Более подборные информации предоставляет КОВО, внешнеторговое предприятие,

г. Прага, ЧССР

11. УКАЗАНИЯ ПО ТРАНСПОРТИРОВКЕ И ХРАНЕНИЮ

11.1. Транспортировка

Конструкция тары решена с учетом уменьшения воздействия косвенных влияний в процессе транспортировки. Транспортировку можно осуществлять с помощью всех транспортных средств. Однако, прибор должен быть защищен от прямого действия погоды, а также от воздействия температуры ниже —25 °С и выше +55 °С. Кратковременное увеличение влажности не оказывает вредного действия на собственно прибор.

11.2. Хранение

Неупакованный прибор можно хранить в среде с температурой +5 °C ÷ +40 °C при максималь-

When a defective component has to be exchanged, only such a spare part must be used instead of it which is given in the List of Electrical Components. The enclosed diagrams and drawings of the printed circuit boards will help in the comprehension of their operation and serve as a guide for locating and remedving defects.

In order to uphold their good tradition, TESLA Brno, Concern Corp., are greatly interested in ensuring that their instruments serve the users with maximum accuracy. Therefore, customers who have not the necessary test equipment, nor sufficient experience in repairing involved electronic circuits, are advised to enstrust repairs to the makers, or to their Service Organization.

Detailed information is available from:

KOVO, Foreign Trade Corporation 2 Jankovcova, 170 88 Praha 7.

Czechoslovakia.

11. INSTRUCTIONS FOR TRANSPORT AND STORAGE

11.1. Transport

The packing of the BM 566A oscilloscope has been designed so as to reduce as far as possible adverse influences which could be encountered during transport, which can be accomplished by any transport means. However, the instrument must be protected from the direct influence of inclement weather and of temperatures exceeding the range of -25 °C to +55 °C. Transitory increase of the relative humidity has no detrimental effect on the instrument.

11.2. Storage

When unpacked, the BM 566A oscilloscope can be stored at temperatures within the range of +5 $^\circ$ C

do 80 %. Při krátkodobém skladování lze přístroj v továrním obalu skladovat v rozmezí -25 °C až +55 °C při relativní vlhkosti do 95 %.

V obou případech je nutné skladované přístroje chránit proti povětrnostním vlivům uložením ve vhodných prostorách prostých prachu a výparů z chemikálií. Na skladované přístroje nemá být ukládán žádný další materiál.

ной относительной влажности до 80 %. При кратковременном хранении можно прибор в заводской таре хранить в среде с температурой от -25 °C до +55 °C и при относительной влажности до 95 %.

В обоих случаях необходимо хранимые приборы защищать от воздействия погоды путем их установки в подходящих помещениях без пыли и химических испарений.

мических испарония. На помещеные на хранение приборы запрещается класть какой-либо иной материал.

12. УСЛОВИЯ ГАРАНТИИ

to +40 °C at a maximum relative humidity

When placed in its original packing, the instrume can be stored for any length of time at temperature withing the range of -25 °C to +55 °C at a relative hi mility of up to 95 %.

In either case, the oscilloscope must be protected from adverse atmospheric influence by keeping it a suitable room which is free from dust and chemic fumes.

No other material must be stacked on the stored in strument.

12. ÚDAJE O ZÁRUCE

Na správnou funkci výrobků poskytuje koncernový podnik TESLA Brno záruku v délce stanovené pro tuzemské zákazníky hospodářským zákoníkem č. 109/1964 Sb. ve znění č. 37/1971 Sb. (§ § 198,

Podrobnější údaje o délce záruční doby jsou uvedeny v záručním listě. Национальное предприятие Тесла Брно гарантирует правильную работу своих изделий в течение гарантийного срока для заказчиков стран-членов СЭВ и им равных, установленного общими условиями СЭВ 1968 г. (§ § 28—30). Более подробные данные о продолжительности гарантийного срока указаны в гарантийном свидетельстве.

12. GURANTEE

With customers outside Czechoslovakia, the guara tee conditions are agreed upon individually in eve case. (Details about the guarantee terms are given, the Guarantee Certificate.)

13. ROZPIS ELEKTRICKÝCH SOUČÁSTÍ

13. СПЕЦИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ ДЕТАЛЕЙ

13. LIST OF ELECTRICAL COMPONENTS

.

1XP 830 22

Resistors:

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR	No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R1, R101	Film	1 0 Ω	10	0.25	TR 191 10RK	R161, R1	62 Film	56 Ω	10	0.25	TR 191 56RK
R2, R102	Film	82 Ω	5	0.25	TR 191 82RJ	R163	Potentiometer	10 kΩ	_	0.2	TP 190 20A 10KN
R3, R103	Film	990 kΩ	0.5	0.25	1AK 653 09	R166, R1	67 Potentiometer	$5 k\Omega + 50 k\Omega$	-	0.25	TP 286b 40A 5KN -
R4, R104	Film	900 kΩ	0.5	0.25	1AK 653 10						+ 50 KN
R5, R105	Film	10 Ω	10	0.25	TR 191 10RK	R170	Film	82 Ω	10	0.25	TR 191 82RK
R6, R106	Film	10.1 kΩ	0.5	0.125	TR 161 10K1D-1	R171, R1	72 Film	470 Ω	10	0.25	TR 191 470RK
R7, R107	Film	111 kΩ	0.5	0.125	TR 161 111KD-1	Ř175	Film	402 Ω	1	0.25	TR 191 402RF
R8, R108	Film	9.1 Ω	5	0.25	TR 191 9R1J	R176	Potentiometer	2 kΩ			1AN 691 70
R9, R109	Film	82 Ω	5	0.25	TR 191 82RJ	R177	Film	2.74 kΩ	1	0.25	TR 191 2K74F
R10, R110	Film	390 Ω	5	0.25	TR 191 390RJ	R178	Potentiometer	1 kΩ		0.2	TP 190 12E 1KN
R11, R111	Film	120 Ω	5	0.25	TR 191 120RJ	R179	Film	2.74 kΩ	1	0.25	TR 191 2K74F
R15, R115	Film	. 100 kΩ	1	0.25	TR 191 100KF	R180	Potentiometer	1 kΩ		0.2	TP 190 12E 1KN
R16, R116	Film	900 kΩ	0.5	0.25	1AK 653 10	R185	Film	5 MΩ	1	0.5	TR 107 5M0F
317, R117	Film	470 kΩ	5	0.25	TR 191 470KJ	R186	Film	2 ΜΩ	1	0.5	TR 107 2M0F
R21, R121	Film	71.5 Ω	0.5	0.125	TR 161 71R5D-1	R187	Film	1 M Ω	0.5	0.25	1AK 653 11
R122, R122	Film	301 Ω	0.5	0.125	TR 161 301RD-1	R188	Film	499 kΩ	0.5	0.5	TR 163 499KD-1
R123, R123	Film	137 Ω	0.5	0.125	TR 161 137RD-1	R189	Film	200 kΩ	0.5	0.125	TR 161 200KD-1
R24, R124	Film	301 Ω	0.5	0.125	TR 161 301RD-1	R190	Film	100 kΩ	0.5	0.125	TR 161 100KD-1
R25, R26	Film	75 Ω	0.5 ,	0.125	TR 161 75RD-1	R191	Film	49.9 kΩ	0.5	0.125	TR 161 49K9D-1
R27, R127	Film	110 Ω	0.5	0.125	TR 161 110RD-1	R192	Film	200 kΩ	0.5	0.125	TR 161 200KD-1
R28, R128	Film	150 Ω	0.5	0.125	TR 161 150RD-1	R193	Film	100 kΩ	0.5	0.125	TR 161 100KD-1
R35, R135	Potentiometer	10 kΩ	_	0.2	TP 190 12E 10KN	R194	Film	48.7 kΩ	0.5	0.125	TR 161 48K7D-1
R36, R136	Potentiometer	5 kΩ	-	0.15	1AN 692 95	R195	Film	100 kΩ	10	0.25	TR 191 100KK
37, R137	Potentiometer	1 kΩ	_	0.15	1AN 692 97	R200	Film	1 kΩ	5	0.25	TR 191 1K0J
38, R138	Potentiometer	5 kΩ	10	´ 0.2	1AN 736 16	R201-R2	205 Film	10 MΩ	1	0.5	TR 107 10M0F
39, R139	Film	27 Ω	10	0.25	TR 191 27RK	R206	Film	5 MΩ	1	0.5	TR 107 5M0F
340, R140		1 50 Ω	5	0.25	TR 191 150RJ	R207	Film	2 MΩ	1	0.5	TR 107 2M0F
R41, R141	Film	150 Ω	5	0.25	TR 191 150RJ	R208	Film	1 MΩ	0.5 `	0.25	1AK 653 11
742, R142	Film	2.7 kΩ	5	0.25	TR 191 2K7J	R209	Film	499 kΩ	0.5	0.5	TR 163 499KD-1
R43, R143		750 Ω	10	0.25	TR 191 750RK	R210	Film	200 kΩ	0.5	0.125	TR 161 200KD-1
R160	Potentiometer	10 kΩ	_	0.2	TP 190 20A 10KN	R211	Film	100 kΩ	0.5	0.125	TR 161 100KD-1

69

,

1 0.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
	Film	49.9 kΩ	0.5	0.125	TR 161 49K9D-1
212	Film	200 kΩ	0.5	0.125	TR 161 200KD-1
213	Film	100 kΩ	0.5	0.125	TR 161 100KD-1
214 215	Film	49.9 kΩ	0.5	0.125	TR 161 49K9D-1

Capacitors:

No.	Туре	Value	Tolerance	Max. DC voltage V	Standard ČSSR
	P.E.T.	22 000 pF	10	400	TC 276 22nK
C1, C101	Ceramic	15 pF	5	40	1K 754 15pJ
C2, C102	Ceramic	ropi			
C3C6,	Trimmor	20 pF		250	1AK 701 63
C103-C106	Feed-through	470 pF	_	300	1AK 713 13
C7, C107	-	33 pF	5	400	WK 711 33pJ
C8, C108	Paper	10 pF	10	40	TK 754 10pK
C10, C110	Ceramic	82 pF	5	40	TK 754 82pJ
C15, C115	Ceramic	02 pr	-20		
C16, C116	Ceramic	1 500 pF	+50	40	TK 744 1n5S
010, 0110			-20		
C35, C135	Ceramic	10 000 pF	+50	250	TK 745 10nS
	Caramia	330 pF	5	40	TK 794 330pJ
C36, C136	Ceramic	10 µF	_	50	TE 156 10μ
C50	Electrolytic	220 pF	10	40	TK 754 220pK
C170, C17		220 μF	-	10	TE 003 10M
C172	Electrolytic	0.1 μF	1	100	WK 716 01 100nD
C185	Polystyrene	1 000 pF	1	100	WK 716 01 1nD
C186	Polystyrene		5	250	TK 755 82pJ
C187	Ceramic	82 pF		250	1AK 701 63
C188	Trimmer	20 pF		250	1AK 701 62
C189	Trimmer	12 pF	10	250	TK 755 100pK
C190	Ceramic	100 pF	20	200	
C191	Ceramic	0.1 <i>μ</i> F	-20 +80	32	TK 783 100nZ
		1 <i>µ</i> F		70	TE 988 1μ - PVC
C200	Electrolytic	i µa	-20		
C201	Ceramic	10 000 pF	+50	250	TK 745 10nS

No.	Туре	Value	Tolerance ± %	Max, DC voltage V	Standard CSSR
C202	Ceramic	1 000 pF	-20 +50	250	TK 745 1nS
0000	Ceramic	220 pF	10	40	TK 754 220pK
C203	Polystyrene	0.1 <i>µ</i> F	1	100	WK 716 01 100nE
C204 C205	Polystyrene	1 000 pF	1	100	WK 716 01 1nD
	Ceramic	82 pF	5	40	TK 754 82pJ
C206	Trimmer	20 pF		250	1AK 701 63
C207 C208	Trimmer	12 pF	-	250	1AK 701 62
C208	Ceramic	0.1 <i>µ</i> F	20 +80	32	TK 783 100nZ
C215, C216 Electrolytic C217, C218 Electrolytic C219, C220 Electrolytic		20 <i>µ</i> F	-	25	TE 154 20 <i>1</i>
		50 µF		10	TE 152 50µ
		20 <i>µ</i> F		25	TE 154 20 <i>u</i>

Transformers and coils:

Component	Designation	Drawing No.	No of tap	No. of turns	Wire Ø in mm
Choke-coil	L160-L162	1AN 952 60	1-2	30	0.25

.

Further electrical components:

Component	Type-Value		
Integrated circuit IO 170	MH 7400		
Diode E1	KA206		
Diode E170	LQ 1432		

.

Kalibrátor Калибратор Calibrator 1AF 021 14.1

Rezistors:

No.	Туре	Value	Tolerance ± %	Max. load W	Standard ČSSR
 R1	Film	1.37 kΩ	1	0.25	TR 191 1K37F
R2	Film	723 Ω	1	0.25	TR 191 723RF
R3	Film	72.3 Ω	1	0.25	TR 191 72R3F
R4	Film	8.06 Ω	1	0.25	TR 191 8R06F
R5	Trimmer	220 Ω	_	0.25	TP 095 220RN
R6	Film	3.3 kΩ	10	0.25	TR 213 3K3K
R7	Film	2.2 kΩ	10	0.25	TR 213 2K2K
R8, R9	Trimmer	10 kΩ		0.25	TP 095 10KN
R10	Film	16.9 kΩ	2	0.25	TR 191 16K9G
R11	Film	931 Ω	1	0.25	TR 191 931RF
B12	Film	1.47 kΩ	2	0.25	TR 191 1K47G
R13	Film	16,9 kΩ	2	0.25	TR 191 16K9G
R14	Film	12 Ω	10	0.25	TR 213 12RK
R15	Film	3.3 Ω	10	0.25	TR 213 3R3K
R16	Film	150 Ω	10	0.25	TR 213 150RK
R17, R18	Film	820 Ω	10	0.25	TR 213 820RK

Capacitors:

No.	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR
C1, C2	Metal	0.1 μF	5	250	TC 206 100nJ
C3, C5	Ceramic	0.1 μF	+8020	32	TK 783 100nZ

Further electrical components:

· 、

Component		Type-Value	
Integrated circuit	IO1	UCY74123N	
Diode	E1, E2	KA261	
Diode	E3	KA206	

Zesilovač Усилитель Amplifier 1AF 021 19

Resistors:

.

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R1, R201	Film	910 kΩ	5	0.25	TR 191 910 KJ
	Film	3 ΜΩ	5	0.25	TR 151 3MB
•	Film	820 kΩ	5	0.25	TR 191 820KJ
R4, R204	Film	150 kΩ	5	0.25	TR 191 150KJ
R5, R205	Trimmer	100 kΩ	-	0.5	TP 012 100K
R6, R206	Film	10 Ω	5	0.25	TR 191 10RJ
R7, R207	Film	10 Ω	5 .	0.25	TR 191 10RJ
,	Film	27 Ω	5	0.25	TR 191 27RJ
	Film	27 Ω	5	0.25	TR 191 27RJ
	Film	10 Ω	5	0.25	TR 191 10RJ
	Film	22 Ω	5	0.25	TR 191 22RJ
,	Film	39.2 kΩ	1.	0.25	TR 191 39K2F
	Film	39 Ω	10	0.25	TR 191 39RK
	Film	27 Ω	5	0.25	TR 191 27RJ
	Film	1.8 kΩ	5	0.25	TR 191 1K8J
	Film	100 Ω	5	0.25	TR 191 100RJ
•	Film	1.2 kΩ	5	0.25	TR 191 1K2J
•	Film	56.2 Ω	2	0.25	TR 191 56R2G
•	Film	22 Ω	10	0.25	TR 191 22RK
	Film	1 00 Ω	2	0.25	TR 191 100RG
	Film	430 Ω	5	0.25	TR 191 430RJ
	Film	2 kΩ	1	0.25	TR 191 2K0F
,	Film	68 Q	5	0.25	TR 191 68RJ
R24, R224	Trimmer	10 0 Ω	-	0.5	TP 095 100R
R25, R225	Trimmer	100 Ω	-	0.5	TP 095 100R
R26, R226	Film	1.5 kΩ	5	0.25	TR 191 1K5J
R27, R227	Film	2.4 kΩ	5	0.25	TR 191 2K4J
R28, R228	Film	· 560 Ω	5	0.25	TR 191 560RJ
R29, R229	Film	1.2 kΩ	5	0.25	TR 191 1K2J
R30, R230	Film	54.9 Ω	1	0.25	TR 191 54R9F
R31, R231	Film	82 Ω	10	0.25	TR 191 82RK
R32, R232	Film	2.4 kΩ	5	0.25	TR 191 2K4J
R33, R233	Film	39 Ω	5	0.25	TR 191 39RJ
R34, R234	Film	10 Ω	5	0.25	TR 191 10RJ

71

•

	Туре	Value	Tolerance ± %	Max. load W	Standard CSSR	No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
ło.	.,,,,		1 /0						10	0.25	TR 191 10RK
				0.25	TR 191 51R1F	R82, R282		10 Ω	10	0.25	TR 191 10RK
35, R235	Film	51.1 Ω	1	0.25	TR 191 47RJ	R83, R283		10 Ω	10	0.25	TR 191 27RK
36, R236	Film	47 Ω	5	0.25	TR 191 39K2F	R84, R284	Film	27 Ω	10	0.25	TR 191 2K37G
37, R237	Film	39.2 kΩ	1	0.25	TP 095 4K7	R85, R285	Film	2.37 kΩ	2		TP 012 680RN
841	Trimmer	4.7 kΩ			TR 191 1K0F	R86, R286	Trimmer	680 Ω	-	0.5	TR 191 2K37G
342	Film	1 kΩ	1	0.25	TR 161 49R9D-1	R87, R287	Film	2.37 kΩ	2	0.25	TR 191 10RK
48, R248	Film	49.9 Ω	0.5	0.125	TR 191 2K67F	R88, R288	Film	10 Ω	10	0.25	TP 095 1K0
49, R249	Film	2.67 kΩ	1	0.25	TR 191 2K67F	R89, R289	Trimmer	1 kΩ	-	0.5	
150, R250		2.67 kΩ	1	0.25		R90, R290	Film	66.5 Ω	1	0.25	TR 191 66R5F
151, R251		27 Ω	10	0.25	TR 191 27RK	R91, R291	Film	56.2 Ω	2	0.25	TR 191 56R2G
352, R252		1.21 kΩ	2	0.25	TR 191 1K21G	R92, R292		56.2 Ω	2	0.25	TR 191 56R2G
153, R253		680 Ω	_	0.5	TP 012 680R	R93, R293		10 Ω	5	0.25	TR 191 10RJ
754, R254		1.21 kΩ	2	0.25	TR 191 1K21G	R94, R294		10 Ω	5	0.25	TR 191 10RJ
	5 Trimmer	1 kΩ	_	0.5	TP 095 1K0	R94, R294 R95, R295		27 Ω	10	0.25	TR 191 27RK
155, H255 156, R256		66.5 Ω	1	0.25	TR 191 66R5F			27 Ω	10	0.25	TR 191 27RK
100, H200		24 Ω	5	0.25	TR 191 24RJ	R96, R296		1 kΩ	2	0.25	TR 191 1K0G
757, R257		4.7 Ω	5	2.05	TR 191 4R7J	R97, R297		3.09 kΩ	1	0.25	TR 191 3K09F
758, R258		4.7 se 100 Ω	1	0.25	TR 191 100RF	R98, R298		100 Ω	1	0.25	TR 191 100RF
759, R25 9		100 Ω	1	0.25	TR 191 100RF	R99	Film		1	0.25	TR 191 100RF
R60, R260		681 Ω	2	0.25	TR 191 681RG	R100	Film	100 Ω	5	0.25	TR 191 27RJ
R61, R261			5	0.25	TR 191 510RJ	R101	Film	27 Ω	10	0.25	TR 191 10RK
R62, R262		510 Ω	10	0.25	TR 191 1K5K	R102	Film	10 Ω	10	0.25	TR 191 10RK
R63, R263		1.5 kΩ	5	0.25	TR 191 1K0J	R103	Film	10 Ω		0.5	TP 095 100R
R64, R264		1 kΩ	5	0.25	TR 191 1K0J	R104	Trimmer	100 Ω		0.25	TR 191 5K62F
R65, R26		1 kΩ	5	0.25	TR 191 75RF	R105	Film	5.62 kΩ	1	0.25	TR 191 301R
R66, R26		75 Ω	•	0.25	TR 191 75RF	R106	Film	30 1 Ω	1		TR 192 909RI
R67, R26	7 Film	75 Ω	1	0.25	TR 191 27RJ	R107	Film	909 Ω	1	0.6	TP 012 150RI
R68, R26	8 Film	27 Ω	5		TR 191 27RJ	R108	Trimmer	150 Ω		0.5	TR 192 1K2J
R69, R26	9 Film	27 Ω	5	0.25	TR 191 3K0J	R109	Film	1.2 kΩ	5	0.6	
R70, R27		3 kΩ	5	0.25		R111	Film	121 Ω	2	0.25	TR 191 121R
R71, R27		1.5 kΩ	5	0.25	TR 191 1K5J	R112	Film	121 Ω	2	0.25	TR 191 121R
R72, R27		100 Ω	2	0.25	TR 191 100RG	R113	Film	10 Ω	5	0.25	TR 191 10RJ
R73, R27	3 Film	100 Ω	2	0.25	TR 191 100RG	R114	Film	10 Ω	5	0.25	TR 191 10RJ
R74, R27		10 Ω	5	0.25	TR 191 10RJ	· R115	Film	5.23 kΩ	1	0.25	TR 191 5K23
R75, R27		3.32 kΩ	2	0.25	TR 191 3K32G	R115	Film	5.23 kΩ	1	0.25	TR 191 5K23
R76, R27		3.32 kΩ	2	0.25	TR 191 3K32G	R151, R1		2 kΩ	5	0.6	TR 192 2K0J
R77, R27		10 Ω	5	0.25	TR 191 10RJ	R151, R1 R153, R1	54 Film	2.2 Ω	5	0.125	TR 112 2R2J
R78, R27		27 Ω	10	0.25	TR 191 27RK		Film	510 Ω	5	1	TR 153 510P
R79, R27		27 Ω	10	0.25	TR 191 27RK	R155	Trimmer	470 Ω	_	0.5	TP 095 470R
		10 Ω	10	0.25	TR 191 10RK	R156		430 Ω	5	0.25	TR 191 430R
R80, R2	BO Film B1 Film	10 Ω	10	0.25	TR 191 10RK	R157	Film	400 %	•		

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R158	Film	178 Ω	2	0.25	TR 191 178RG
R159	Film	220 Ω	2 5	2	TR 182A 220RJ
R160	Film	178 Ω	2	0.25	TR 191 178RG
R161	Film	430 Ω	5	0.25	TR 191 430RJ
R162, R1	63 Film	360 Ω	5	0.6	TR 192 360RJ
R164	Film	10 kΩ	2.	0.25	TR 191 10KG
R165, R1	66 Film	33 Ω	5	0.25	TR 191 33RJ
R167	Film	10 kΩ	2	0.25	TR 191 10KG
R168, R1	69 Film	3.92 kΩ	1	0.25	TR 191 3K92F
R170, R1		10 Ω	10	0.25	TR 191 10RK
R299	Film	2 kΩ	5	0.25	TR 191 2K0J
R300	Film	10 Ω	5	0.25	TR 191 10RJ
R301	Film	10 Ω	5	0.25	TR 191 10RJ
R302	Film	2 kΩ	5	0.25	TR 191 2K0J
R303	Film	1 kΩ	2	0.25	TR 191 1K0G
R304	Film	3.09 kΩ	1	0.25	TR 191 3K09F
R305, R3		27 Ω	10	0.25	TR 191 27RK
R307, R3		100 Ω	1	0.25	TR 191 100RF
R309	Film	27 Ω	5	0.25	TR 191 27RJ
R310, R3		10 Ω	10	0.25	TR 191 10RK
R312	Trimmer	100 Ω	_	0.5	TP 095 100R
R313	Film	5.62 kΩ	1	0.25	TR 191 5K62F
R314	Film	301 Ω	1	0.25	TR 191 301RF
R315	Film	909 Ω	1	0.6	TR 192 909RF
R317	Film	1.2 kΩ	5	0.6	TR 192 1K2J
R318	Film	27 Ω	10	0.25	TR 191 27RK
R319, R3		121 Ω	2	0.25	TR 191 121RG
R321, R3		10 Ω	5	0.25	TR 191 10RJ
R323, R3		5.23 kΩ	1	0.25	TR 191 5K23F
R326	Film	150 Ω	_	0.5	TP 012 150RN
R351-R3		2.2 kΩ	10	0.25	TR 191 2K2K
R354, R3		10 Ω	10	0.25	TR 191 10RK
R356	Film	2.2 kΩ	10	0.25	TR 191 2K2K
R357	Film	10 Ω	10	0.25	TR 191 10RK
R358	Film	2.2 kΩ	10	0.25	TR 191 2K2K
R359	Film	1.5 kΩ	10	0.25	TR 191 1K5K
R360	Film	2.2 kΩ	10	0.25	TR 191 2K2K
R365	Film	5.6 kΩ	10	0.25	TR 191 5K6K
R366	Film	5.6 kΩ	10	0.25	TR 191 5K6K

.

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R367, R3	68 Film	7.5 kΩ	5	0.25	TR 191 7K5J
R369	Film	6.8 kΩ	10	0.25	TR 191 6K8K
R370	Film	2.7 kΩ	10	0.25	TR 191 2K7K
R371	Film	15 kΩ	10	0.25	TR 191 15KK
R372	Film	3.3 kΩ	5	0.25	TR 191 3K3J
R373	Film	910 (750) Ω	5	1	TR 153 910 (750)RJ
R374	Film	2.7 kΩ	10	0.25	TR 191 2K7K
R375	Film	6.8 kΩ	10	0.25	TR 191 6K8K

Capacitors:

No.	Туре	Value	Tolerance ±%	Max. DC voltage V	Standard ČSSR
C1, C201	Ceramic	22 000 pF	-20 +50	40	TK 744 22nS
C2, C202	Trimmer	25 pF	_	200	WN 704 24
C3, C203	Ceramic	18 pF	10	40	TK 754 18pK
C4, C204	Trimmer	5 pF		400	WK 701 09
C5, C205	Electrolytic	10 μF		35	TE 005 10M
C6, C206	Ceramic	4 700 pF	20 +50	40	TK 744 4n7S
C7, C207	Ceramic	,10 000 pF	20 +50	40	TK 744 10nS
C9, C209	Ceramic	1.5 pF	0.5	400	TK 656 1p5D
C10, C210	Electrolytic	10 <i>μ</i> F	_	10	TE 003 10M
C11, C211	Ceramic	22 000 pF	20 +50	40	TK 744 22nS
C12, C212	Ceramic	1 pF	0.5	400	TK 656 1p0D
C13, C213	Ceramic	10 000 pF	20 ++50	40	TK 744 10nS
C14, C214	Trimmer	3—12 pF	—	250	1AK 701 62
C15, C215	Electrolytic	10 <i>μ</i> F	·	35	TE 005 10M
C16, C216	Ceramic	4 700 pF	-20 +50	40	TK 744 4n7S

No.	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR	No.	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR	
C17, C217	Ceramic	1 000 pF	20 +-50	250	TK 745 1n0S	C70, C270	Ceramic	2 200 pF	-20 +50	250	TK 745 2n2S	
			100			C71, C271	Ceramic	8.2 pF	1	250	TK 755 8p2F	•
C18, C218	Electrolytic	50 μF	-	10	Vµ TE 152 50	C72, C272	Ceramic	8.2 pF	1	250	TK 755 8p2F	
C19, C219	Electrolytic	50 <i>µ</i> F		10	TE 152 50 μV	C151	Ceramic	10 000 pF	20 +50	40	TK 744 10nS	
			-20			C152-C15	5 Ceramic	3.3 (5.6) pl	= 0.5	250	TK 755 3p3 (5	5p6)D
C20, C220	Ceramic	4 700 pF	+50	40	TK 744 4n7S	C156	Ceramic	4 700 pF	-20 +50	250	TK 745 4n7S	
C21, C221	Ceramic	1 000 pF	20 +50 20	250	TK 745 1n0S	C300	Ceramic	10 000 pF	-20 +50	250	TK 745 10nS	
C22, C222	Ceramic	10 000 pF	+50	40	TK 744 10nS	C301	Electrolytic	20 <i>µ</i> F	_	25	TE 154 20 μV	1
C24, C224	Ceramic	0.1 <i>µ</i> F	20 +80	32	TK 783 100nZ	C302	Ceramic	0.1 <i>µ</i> F	-20 +80	32	TK 783 100n2	Ζ
C52, C252 C53, C253	Ceramic	25 pF 68 pF	5	200 250	WN 704 24 TK 755 68pJ	C303	Ceramic	0.1 <i>µ</i> F	20 +80	32	TK 783 100n2	Z
C54, C254		3.3 pF	0.5	250 250	TK 755 3p3D TK 755 3p3D					05	TE 154 00 W	,
C55, C255		3.3 pF	0.5 10	250 250	TK 755 10pK	C304	Electrolytic	20 <i>µ</i> F	_	25	TE 154 20 μV	
C56, C256		10 pF 10 pF	10	250	TK 755 10pK	0054 005		00.000 -5	-20	40	TK 744 22nS	
C57, C257		330 pF	10	40	TK 754 330pK	C351C35	3 Ceramic	22 000 pF	+50	. 40		
C58, C258 C59, C259		1 000 pF	-20 +50	250	TK 745 1n0S	C354 C355	Ceramic Ceramic	100 pF 330 pF	5 5	40 40	TK 754 100p. TK 754 330p.	J
C60, C260	Ceramic	2 200 pF	20 +50	40	TK 744 2n2S	C357	Ceramic	1 500 pF	20	40	TK 724 1n5M	
C61, C261	Ceramic	2 200 pF	-20 +50	40	TK 744 2n2S							
C62, C262	Ceramic	4 700 pF	20 +50	40	TK 744 4n7S	Transf	ormers an	d coils:				
C63, C263	Trimmer	25 pF	_	200	WN 704 24	······································						Wire
C64, C264		22 pF	10	40	ТК 754 22рК	Component	Design	ation	Drawing No.	No. of tap	No. of turns	in m
C65, C265	6 Ceramic	6.8 pF	1	40	TK 754 6p8F							
C66, C266	6 Ceramic	6.8 pF	1	40	TK 754 6p8F	Core	•	2, L51L56,				
C67, C267	Ceramic	4 700 pF	20 +50	40	TK 744 4n7S		L202	, L152, L201, , L253L256	1AA 436 36			
C68, C268	B Ceramic	3.9 pF	0.5	250	TK 755 3p9D	Choke-coi		4, L203,				~ ~ ~
,	Trimmer	25 pF	_	200	WN 704 24		L204	L301	1AN 952 60	1–2	30	0.25

Further electrical components:

Component	Type - Value	Drawing No.		
Integrated circuit IO 1, IO 201	MAA 741		Resisto	ors:
Integrated circuit IO 351	MH 7400S			Туре
Integrated circuit IO 365	MH 7472			
Diode E1, E2, E201, E202	KA136		R1	Film
Pair of transistors $E3 + E4$,	•		R2	Film
E203 + E204	BF256B	1AN 114 95	R3	Film
			R4	Film
Transistor E5, E7, E10, E11,			R5	Film
E15, E16, E205, E207, E210, E211, E215, E216	BFY90T/2	1AN 113 93	R6 R8	Film Film
			R9	Film
Transistor E6, E206	KC149-TO92		R10	Film
Transistor E8, E208	BSX29	1AN 145 30	R11	Trim
Diode E9, E209, E14, E214	KZ260/6V8		R12	Film
Diode E12, E212	KZ260/5V1		R21	Film
Diode E13, E213	KA206		R22	Film
		1	R23	Film
Pair of transistors E51 + E52,			R24, R25	Film Film
E55 + E56, E58 + E59,			R26 R28	Film
E60 + E61, E62 + E63,			R29	Film
E64 + E65, E151 + E152, E251 + E252, E255 + E256,			R31	Film
E251 + E252, E253 + E250, E258 + E259, E260 + E261,			R32	Trim
E262 + E263, E264 + E265,		*	R33	Film
E266 + E267	BFY90T/2	1AN 116 19	R41	Film
	BI TOOTAL .		R42	Film
Quadruple of transistors E53,	KACAA		R43	Film
E54, E253, E254	KAS44		R44, R45	Film
Set of diodes E66 + E67,			R46	Film Film
E68 + E69, E268 + E269,		1AN 112 93.1	R48, R49 R50	Film
E270 + E271	KA206	1AN 112 93.1	R51	Trim
Diode E57, E257	KZ260/5V6		R52	Film
Diode E365, E366, E370, E373	KA221		R61, R62	Film
Diode E367, E368, E374, E375	KZ260/10		R63, R64	Film
Transistor E369, E372	TR15		R66	Film
Transistor E371	KC508		R67, R68	Film

. .

Synchronizační zesilovač Усилитель синхронизации Synchronizing amplifier

.

1AF 021 21

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R1	Film	47 Ω	10	0.25	TR 191 47RK
R2	Film	27 Ω	10	0.25	TR 191 27RK
R3	Film	47 Ω	10	0.25	TR 191 47RK
R4	Film	2.7 kΩ	5	0.25	TR 191 2K7J
R5	Film	2.7 kΩ	5	0.25	TR 191 2K7J
R6	Film	1 21 Ω	2	0.25	TR 191 121RG
R8	Film	100 Ω	5	0.25	TR 191 100RJ
R9	Film	100 Ω	5	0.25	TR 191 100RJ
R10	Film	887Ω *	1	0.25	TR 191 887RF
R11	Trimmer	470 Ω		0.5	TP 012 470RN
R12	Film	887 Ω	1	0.25	TR 191 887RF
R21	Film	47 Ω	10	0.25	TR 191 47RK
R22	Film	27 Ω	10	0.25	TR 191 27RK
R23	Film	47 Ω	10	0.25	TR 191 47RK
R24, R25	Film	2.7 Ω	5	0.25	TR 191 2K7J
R26	Film	82 .5 Ω	2	0.25	TR 191 82R5G
R28	Film	100 Ω	5	0.25	TR 191 100RJ
R29	Film	100 Ω	5	0.25	TR 191 100RJ
R31	Film	887 Ω	1	0.25	TR 191 887RF
R32	Trimmer	470 Ω	-	0.5	TP 012 470RN
R33	Film	. 887 Ω	1	0.25	TR 191 887RF
R41	Film	47 Ω	10	0.25	TR 191 47RK
R42	Film	27 Ω	10	0.25	TR 191 27RK
R43	Film	47 Ω	10	0.25	TR 191 47RK
R44, R45	Film	2.7 kΩ	5	0.25	TR 191 2K7J
R46	Film	121 Ω	2	0.25	TR 191 121RG
R48, R49	Film	100 Ω	5	0.25	TR 191 100RJ
R50	Film	887 Ω	. 1	0.25	TR 191 887RF
R51	Trimmer	470 Ω		0.5	TP 012 470RN
R52	Film	887 Ω	1	0.25	TR 191 887RF
R61, R62	Film	680 Ω	5	0.25	TR 191 680RJ
R63, R64	Film	47 Ω	5	0.25	TR 191 47RJ
R66	Film	1.5 kΩ	5	0.25	TR 191 1K5J
R67, R68	Film	220 Ω	5	0.25	TR 191 220RJ

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
	Film	68 Ω	5	0.25	TR 191 68RJ
R69	Film	1.3 kΩ	5	0.25	TR 191 1K3J
R70, R71		100 Ω	5	0.25	TR 191 100RJ
R72	Film	27 Ω	5	0.25	TR 191 27RJ
R73	Film	330 Ω	5	0.25	TR 191 330RJ
R74	Film	1.8 kΩ	5	1	TR 181A 1K8J
R75	Film		-6	0.25	TR 191 390RJ
R76	Film	390 Ω	5	0.25	TR 191 1K5J
R77	Film	1.5 kΩ	5	0.25	TR 191 47RJ
R78	Film	47 Q	5 5	0.25	TR 191 1K2J
R79	Film	1.2 kΩ	-	0.25	TR 191 33RK
R80	Film	33 Ω	10	0.25	TR 191 33KK
R81	Film	33 kΩ	10	0.25	TR 191 270RJ
R82	Film	270 Ω	5		TR 191 2K7J
R83	Film	2.7 kΩ	5.	0.25 0.25	TR 191 3K6J
R84	Film	3.6 kΩ	5	0.25	TR 191 1K5J
R85	Film	1.5 kΩ	5		TR 191 47RK
R86	Film	47 Ω	10	0.25	TR 191 47RK
R87	Film	47 Ω	10	0.25	TR 191 120RJ
R88	Film	120 Ω	5	0.25	
R91, R92		6 8 Ω	5	0.25	TR 191 68RJ

Туре	Value	Tolerance + %	Max DC voltage V	Standard CSSR	
Ceramic	27 pF	10	40	ТК 754 27рК	
Ceramic	680 pF	20 +50	250	TK 745 680pS	
Ceramic	10 000 pF	20 +-50	40	TK 744 10nS	
Electrolytic	5 <i>µ</i> F	_	15	TE 004 5M	
Ceramic	4 700 pF	20 +50	40	TK 744 4n7S	
Ceramic	2 200 pF	-20 +50	40	TK 744 2n2S	
Ceramic	27 pF	10	40 15	TK 754 27pK TE 004 20M	
Electrolytic Ceramic Ceramic	20 µ- 22 pF 3.3 pF	10 10	40 250	ТК 754 22рК ТК 755 3р3К	
	Ceramic Ceramic Ceramic Electrolytic Ceramic Ceramic Electrolytic Ceramic Electrolytic Ceramic	TypeCeramic27 pFCeramic680 pFCeramic10 000 pFElectrolytic5 //FCeramic4 700 pFCeramic2 200 pFCeramic27 pFElectrolytic20 //FCeramic22 pF	Type Value 4.9% Ceramic 27 pF 10 Ceramic 680 pF +50 Ceramic 10 000 pF +50 Electrolytic 5 µF - Ceramic 200 pF +50 Ceramic 2 200 pF +50 Ceramic 27 pF 10 Electrolytic 20 µF -20 Ceramic 27 pF 10 Electrolytic 20 µF -10 Ceramic 27 pF 10 Electrolytic 20 µF -10 Electrolytic 20 µF -10 Electrolytic 20 µF -10 Electrolytic 20 µF -10	Type Value $+ \%$ voltage V Ceramic 27 pF 10 40 Ceramic 680 pF $+50$ 250 Ceramic 10 000 pF $+50$ 40 Electrolytic 5 μ F $-$ 15 Ceramic 4 700 pF -20 40 Ceramic 2 200 pF $+50$ 40 Ceramic 2 200 pF $+50$ 40 Ceramic 2 7 pF 10 40 Electrolytic 20 μ F 20 40 Ceramic 2 7 pF 10 40 Electrolytic 20 μ F 15 50 Ceramic 27 pF 10 40 Electrolytic 20 μ F 15 50	Type Value Voltage V Standard Constru- voltage V Ceramic 27 pF 10 40 TK 754 27pK Ceramic 680 pF 20 250 TK 745 680pS Ceramic 10 000 pF +50 40 TK 744 10nS Electrolytic 5 µF - 15 TE 004 5M Ceramic 4 700 pF +50 40 TK 744 4n7S Ceramic 2 200 pF +50 40 TK 744 2n2S Ceramic 2 200 pF +50 40 TK 744 2n2S Ceramic 2 200 pF +50 40 TK 754 27pK Electrolytic 20 µF - 15 TE 004 20M Ceramic 27 pF 10 40 TK 754 22pK Ceramic 27 pF 10 40 TK 754 22pK Ceramic 22 pF 10 40 TK 754 303K

Transformers and coils:

Component	Designation	Drawing No.
Core	L1, L2, L21, L22, L41, L42, L61,	
	L62, L63, L64, L65, L66, L67	1AA 436 36

Further electrical components:

.

Component	Type - Value	Drawing No.
Pair of transistors E1 + E2, E21 + E22, E41 + E42, E63 + E64	BFY90T/2	1AN 116 19

Capacitors:

	Туре	Value	Tolerance ±%	Max. DC voltage V	Standard ČSSR
		0.000 -5	-20	40	TK 744 6n8S
C1	Ceramic	6 800 pF	+50	40	
			20	40	TK 744 3n3S
C3	Ceramic	3 300 pF	+50	40	
			20	40	TK 744 6n8S
C21	Ceramic	6 800 pF	+50	40	
		_	-20	40	TK 744 3n3S
C24	Ceramic	3 300 pF	+50	40	
		_	-20	40	TK 744 6n8S
C41	Ceramic	6 800 pF	+50	40	
		_	-20	40	TK 744 3n3S
C43	Ceramic	3 300 pF	+50	40	

Component	Type - Value	Drawing No.
Set of diodes $E4 + E5$, $E3 + E6$,		
E24 + E25, E23 + E26,		
E44 + E45, E43 + E46	KA206	1AN 115 00.1
Pair of transistors E61 + E62	BSX29	1AN 114 56
Transistor E65, E68	BSX29	1AN 145 30
Diode E66	KA221	
Transistor E67	BFY90T/2	1AN 113 93

Spouštěcí obvody Схемы запуска Triggering circuits 1AF 021 23 1

Resistors:

•

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R1	Film	10 Ω	10	0.25	TR 191 10RK
R2	Film	1 MΩ	10	0.25	TR 191 1M0K
R3	Film	10 Ω	10	0.25	TR 191 10RK
R4	Film	56 Ω	10	0.25	TR 191 56RK
R5	Film	470 Ω	5	0.25	TR 191 470RJ
R6	Film	1 MΩ	10	0.25	TR 191 1M0K
B 7	Film	470 kΩ	10	0.25	TR 191 470KK
R8	Film	10 Ω	10	0.25	TR 191 10RK
R9	Film	100 Ω	10	0.25	TR 191 100RK
R10	Film	1.15 kΩ	1	0.25	TR 191 1K15F
R11, R12	Film	10 Ω	10	0.25	TR 191 10RK
R13	Film	22 Ω	10	0.25	TR 191 22RK
R14, R15	Film	2.21 kΩ	2	0.25	TR 191 2K21G
R16	Film	5.6 kΩ	10	0.25	TR 191 5K6K
R17	Film	2 kΩ	5	0.25	TR 191 2K0J
R18	Trimmer	3.3 kΩ	-	0.5	TP 095 3K3N
R19	Film	270 Ω	10	0.25	TR 191 270RK
R20	Film	22 Ω	10	0.25	TR 191 22RK

.

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R21	Film	100 Ω	10	0.25	TR 191 100RK
R22	Film	56 Ω	10	0.25	TR 191 56RK
R23, R24	Film	10 Ω	10	0.25	TR 191 10RK
R25, R26	Film	2.21 kΩ	2	0.25	TR 191 2K21G
R27	Film	10 Ω	10	0.25	TR 191 10RK
R28	Film	22 Ω	5	0.25	TR 191 22RJ
R29	Film	1 kΩ	10	0.25	TR 191 1K0K
R30	Film	2.15 kΩ	2	0.25	TR 191 2K15G
R31	Film	750 Ω	2	0.25	TR 191 750RG
R32	Film	1 kΩ	10	0.25	TR 191 1K0K
R33-R36	Film	10 Ω	10	0.25	TR 191 10RK
R37	Film	2.15 kΩ	2	0.25	TR 191 2K15G
R38-R41	Film	10 Ω	10	0.25	TR 191 10RK
R42	Film	750 Ω	2	0.25	TR 191 750RG
R43-R44	Film	100 Ω	2	0.25	TR 191 100RG
R45	Film	10 Ω	10	0.25	TR 191 10RK
R46	Film	470 Ω	5	0.25	TR 191 470RJ
R47	Film	10 Ω	10	0.25	TR 191 10RK
R48	Film	2.51 kΩ	1	0.25	TR 191 2K51F
R49	Film	332 Ω	2	0.25	TR 191 332RG
R50	Film	100 kΩ	10	0.25	TR 191 100KK
R51-R53	Film	10 Ω	10	0.25	TR 191 10RK
R54	Film	2.51 kΩ	1	0.25	TR 191 2K51F
R55	Film	10 Ω	10	0.25	TR 191 10RK
R56	Film	43 k Ω	5	0.25	TR 191 43KJ
R57	Film	82 kΩ	5	0.25	TR 191 82KJ
R58	Film	4.32 kΩ	1	0.25	TR 191 4K32F
R59	Film	3.57 kΩ	1	0.25	TR 191 3K57F
R60, R61	Film	10 Ω	10	0.25	TR 191 10RK
R62	Film	2.8 kΩ	1	0.25	TR 191 2K8F
R63	Film	2.37 kΩ	1	0.25	TR 191 2K37F
R64	Film	442 Ω	1	0.25	TR 191 442RF
R65	Film	3.01 kΩ	1	0.25	TR 191 3K01F
R66	Film	2.61 kΩ	1	0.25	TR 191 2K61F
R67	Film	1 20 Ω	1	0.25	TR 191 120RF
R68	Film	560 Ω	10	0.25	TR 191 560RK
R69	Film	2.61 kΩ	1	0.25	TR 191 2K61F
R70	Film	120 Ω	1	0.25	TR 191 120RF
R71	Film	560 Ω	10	0.25	TR 191 560RK

				Max	Standard ČSSR	No.	Туре	Value	Tolerance ± %	Max Ioad W	Standard ČSSR
No	Туре	Value	Tolerance ± %	Max. load W	Standard CSSH			10 Ω	10	0.25	TR 191 10RK
				0.25	TR 191 562RF	R129, R1	30 Film	2.21 kΩ	2	0.25	TR 191 2K21G
372	Film	562 Ω	1		TR 191 2K0F	R131, R1		10 Ω	10	0.25	TR 191 10RK
372	Film	2 kΩ	1	0.25	TR 191 27RK	R133	Film		5	0.25	TR 191 22RJ
	Film	27 Ω	10	0.25	TR 191 10RK	R134	Film	22 Ω	10	0.25	TR 191 1K0K
180	Film	10 Ω	10	0.25		R135	Film	1 kΩ	2	0.25	TR 191 2K15G
781		2.21 kΩ	2	0.25	TR 191 2K21G	R136	Film	2.15 kΩ		0.25	TR 191 750RG
R82	Film	27 Ω	10	0.25	TR 191 27RK	R137	Film	750 Ω	2	0.25	TR 191 10RK
R83	Film	10 Ω	10	0.25	TR 191 10RK	R138-R	141 Film	10 Ω	10	-	TR 191 1K0K
R84	Film	2.21 kΩ	2	0.25	TR 191 2K21G	R142	Film	1 kΩ	10	0.25	TR 191 10RK
R85	Film		10	0.25	TR 191 560RK	R142	Film	10 Ω	10	0.25	TR 191 2K15G
R86	Film	560 Ω	5	0.25	TR 191 2K4J		Film	2.15 kΩ	2	0.25	TR 191 750RG
R87, R88	Film	2.4 kΩ	2	0.25	TR 191 51R1G	R144	Film	750 Ω	2	· 0.25	
R89	Film	51.1 Ω		0.25	TR 191 750RG	R145	-	10 Ω	10	0.25	TR 191 10RK
R90	Film	750 Ω	2	0.25	TR 191 2K4F		148 Film	100 Ω	2	0.25	TR 191 100RG
R91	Film	2.4 kΩ	1	0.25	TR 191 270G		150 Film	470 Ω	5	0.25	TR 191 470RJ
R92	Film	270 Ω	2		TP 095 3K3N	R151	Film	10 Ω	10	0.25	TR 191 10RK
R93	Trimmer	3.3 kΩ	_	0.5	TP 095 330RN	R152, F	1153 Film		1	0.25	TR 191 2K51F
	Trimmer	330 Ω		0.5	TR 191 47RK	R154	Film	2.51 kΩ	10	0.25	TR 191 10RK
R94		47 Ω	10	0.25	TR 191 4K64G	R155, F	R156 Film	10 Ω	1	0.25	TR 191 3K57F
R95, R96	Film	4.64 kΩ	2	0.25		R157	Film	3.57 kΩ		0.25	TR 191 10RK
R97	Film	1 MΩ	10	0.25	TR 191 1M0K	R158	Film	10 Ω	10	0.25 \	TR 191 2K37F
R102		10 Ω	10	0.25	TR 191 10RK	R159	Film	2.37 kΩ	· 1	0.25	TR 191 10RK
R103	Film	56 Ω	10	0.25	TR 191 56RK	R160	Film	10 Ω	10	0.25	TR 191 2K51F
R104	Film	470 Ω	5	0.25	TR 191 470RJ	R161	Film	2.51 kΩ	1		TR 191 10RK
R105	Film	100 kΩ	10	0.25	TR 191 100KK	R162	Film	10 Ω	10	0.25	TR 191 43KJ
R108	Film	51 kΩ	5	0.25	TR 191 51KJ	R163	Film	43 kΩ	5	0.25	TR 191 82KJ
R109, R	110 Film		10	0.25	TR 191 10KK	R164	Film	82 kΩ	5	0.25	TR 191 4K32F
R111	Film	10 kΩ	10	0.25	TR 191 470KK		Film	4.32 kΩ	1	0.25	
R112	Film	470 kΩ	10	0.25	TR 191 1M0K	R165	Film	10 Ω	10	0.25	TR 191 10RK
R113	Film	1 MΩ		0.25	TR 191 10RK	R166		2.8 kΩ	ì	0.25	TR 191 2K8F
R114	Film	10 Ω	10	0.25	TR 191 100RK	R167	Film	442 Ω	1	0.25	TR 191 442RF
R115	Film	100 Ω	10		TR 191 1K15F	R168	Film	3.01 kΩ	1	0.25	TR 191 3K01F
B116	Film	1.15 kΩ	1	0.25	TR 191 10RK	R169	Film		1	0.25	TR 191 2K61F
n110	R118 Film	10 Ω	10	0.25	TR 191 22RK	R170	、 Film	2.61 kΩ	1	0.25	TR 191 120RF
	Film	22 Ω	10	0.25		R171	Film	120 Ω	10	0.25	TR 191 560RK
R119		2.21 kΩ	2	0.25	TR 191 2K21G	R172	Film	560 Ω		0.25	TR 191 2K61F
	A121 Film	5.6 kΩ	10	0.25	TR 191 5K6K	R173	Film	2.61 kΩ	1	0.25	TR 191 120RF
R122	Film	2 kΩ	5	0.25	TR 191 2K0J	R174		120 Ω	1	0.25	TR 191 560RK
R123	Film	3.3 kΩ		0.5	TP 095 3K3N	R175		560 Ω	10	0.25	TR 191 562RF
R124	Trimmer	270 Ω	10	0.25	TR 191 270RK	R176		562 Ω	1		TR 191 2K0F
R125	Film	270 <u>2</u> 22 Ω	10	0.25	TR 191 22RK	R177		ŻkΩ	1	0.25	TR 191 332R
R126	Film		10	0.25	TR 191 100RK	R178		332 Ω	2	0.25	11 191 30200
R127	Film	100 Ω 56 Ω	10	0.25	TR 191 56RK	R1/0	, , ,,,,,,				
R128	Film	56 Ω	10								

Capacitors:

No.	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR
C1	Tubular	10 000 pF	10	400	TC 208 10nK
C2	Ceramic	10 000 pF	20 +50	.40	TK 744 10nS
C3	Ceramic	22 pF	5	250	TK 755 22pJ
C4	Ceramic	5.6 (6.8) pF	0.5	400	TK 656 5p6 (6p8)D
C5, C6	Ceramic	100 pF	10	250	ТК 755 100рК
C7	Ceramic	220 pF	20	400	TK 626 220pM
C8-C10	Ceramic	100 pF	10	250	TK 755 100pK
C11	Ceramic	10 000 pF	-20+50	250	TK 755 10KS
C12, C13	Ceramic	10 000 pF	-20 + 50	40	TK 744 10nS
C14	Ceramic	1 000 pF	-20+50	40	TK 744 1n0S
C15, C16	Ceramic	10 000 pF	-20+50	40	TK 744 10nS
C80	Ceramic	10 000 pF	20 +-50	40	TK 744 10nS
C81	Ceramic	6.8 pF	0.5	40	TK 754 6p8D
C82	Ceramic	10 000 pF	20 +50	40	TK 744 10nS
C83	Ceramic	6.8 pF	0.5	40	TK 754 6p8D
C84	Ceramic	1 000 pF	20 +-50	40	TK 744 1n0S
C85	Ceramic	10 pF	10	40	TK 754 10pK
C101	Tubular	10 000 pF	10	400	TC 20810nK
C102	Ceramic	22 pF	10	250	TK 755 22pK
C103	Ceramic	0.1 <i>µ</i> F	20	32	TK 783 100nZ
			+80		*
C104	Ceramic	10 000 pF	-20+50	40	TK 744 10nS
C105	Ceramic	22 pF	5	250	TK 755 22pJ
C106	Ceramic	5.6 (6.8) pF	0.5	400	TK 656 5p6(6p8)D
C107	Ceramic	100 pF	10	250	ТК 755 100рК
C108	Ceramic	220 pF	20	400	TK 626 220pM
C109-C1	12 Ceramic	100 pF	10	250	TK 755 100pK
C113	Ceramic	10 000 pF	-20+50	250	TK 745 10kS
C114, C1	15 Ceramic	10 000 pF	-20+50	40	TK 744 10nS
C116	Ceramic	1 000 pF	-20+50	40	TK 744 1n0S
C117, C1	18 Ceramic	10 000 pF	-20+50	40	TK 744 10nS

Transformers and coils:

Component	Designation Dra	awing No.	No. of tap	No. of turns	Wire Ø in mm
Choke-coil	L1, L2, L80, L101, 1/	N 952 64	1-2	5	0.15
Core	L3-L8, L103-L108 14	A 466 03			

Further electrical components:

Component	Type - Value	Drawing No.
integrated circuit IO 1, IO 101	K500LP216	1AN 149 33
Transistor E2, E102	KF907	
Pair of transistors E3 + E4,		
E5 + E6, E7 + E10,		
E8 + E9, E103 + E104,		
E105 + E106, E107 + E110,		
E108 + E109	BFY90T/2	1AN 116 19
Pair of transistors E11 + E12,		
E111 + E112	BF479S	1AN 151 67
Transistor E17, E18, E115, E116	BF506	
Transistor E80, E81	BFY90T/2	1AN 113 93
Transistor E83	KC237B	
Diode E84	KZ260/5V6	

Rozmítací generátory Генераторы качающейся частоты Sweeping generators 1AF 021 24

Resistors:

No.	Туре	Value	Tolerance ± %	Max. load W	Standard ČSSR
R1	Film	10 kΩ	10	0.25	TR 191 10KK
R2	Film	5.1 kΩ	5	0.25	TR 191 5K1J
R3	Film	1.82 kΩ	1	0.25	TR 191 1K82F

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR	No.	Туре	Value	Tolerance ± %	Max. load W	Standard ČSSR
R4	Film	3. 92 k Ω	1	0.25	TR 191 3K92F	R50	Film	1 kΩ	10	0.25	TR 191 1K0K
R5	Film	7.5 kΩ	1	0.25	TR 191 7K5F	R51	Film	301 Ω	1	0.25	TR 191 301RF
R6	Film	383 Ω	1	0.25	TR 191 383RF	R52	Film	100 Ω	1	0.25	TR 191 100RF
R7, R8	Film	33 Ω	10	0.25	TR 191 33RK	R53	Film	3.32 kΩ	1	0.25	TR 191 3K32F
R 9	Film	22 Ω	10	0.25	TR 191 22RK	R54	Film	1.8 kΩ	10	0.25	TR 191 1K8K
R10	Film	1.5 kΩ	10	0.25	TR 191 1K5K	R55, R56	Film	10 kΩ	10	0.25	TR 191 10KK
311	Film	10 Ω	10	0.25	TR 191 10RK	R57	Film	100 kΩ	10	0.25	TR 191 100KH
912	Film	18.2 kΩ	1	0.25	TR 191 18K2F	R58	Film	1 kΩ	10	0.25	TR 191 1K0K
R13	Film	3 kΩ	5	0.25	TR 191 3K0J	R59, R60	Film	10 kΩ	10	0.25	TR 191 10KK
R14	Film	511 Ω	1	0.25	TR 191 511RF	R61	Film	1 kΩ	10	0.25	TR 191 1K0K
R15	Film	14 kΩ	2	0.25	TR 191 14KG	R62	Film	10 kΩ	10	0.25	TR 191 10KK
R16	Film	1.21 kΩ	1	0.25	TR 191 1K21F	R63-R65	Film	2.2 kQ	10	0.25	TR 191 2K2K
717	Film	2 kΩ	1	0.25	TR 191 2K0F	R66	Film	2 kΩ	1	0.25	TR 191 2K0F
718	Film	2.43 kΩ	1	0.25	TR 191 2K43F	R67	Film	470 Ω	10	0.25	TR 191 470R
R19	Film	3.01 kΩ	1	0.25	TR 191 3K01F	R68	Film	12 Ω	10	0.25	TR 191 12RK
720	Film	1 kΩ	1	0.25	TR 191 1K0F	R69	Film	1 kΩ	10	0.25	TR 191 1K0K
721	Film	82.5 Ω	1	0.25	TR 191 82R5F	R70	Film	220 Q	10	0.25	TR 191 220RH
R22, R23	Film	10 kΩ	1	0.25	TR 191 10KF	R71	Film	27 Ω	10	0.25	TR 191 27RK
724	Film	2.21 kΩ	1	0.25	TR 191 2K21F	R72	Film	10 Ω	10	0.25	TR 191 10RK
725	Film	3.32 kΩ	1	0.25	TR 191 3K32F	R73	Film	2.2 kΩ	10	0.25	TR 191 2K2K
R26	Film	681 Ω	1	0.25	TR 191 681RF	R74	Film	1 kΩ	10	0.25	TR 191 1K0K
R 27	Film	1.21 kΩ	1	0.25	TR 191 1K21F	R75	Film	220 Q	10	0.25	TR 191 220RK
728	Film	10 Ω	10	0.25	TR 191 10RK	R76	Film	301 Ω	1	0.25	TR 191 301RF
729	Film	3 kΩ	5	0.25	TR 191 3K0J	R77	Film	1 8 2 Ω	1	0.25	TR 191 182RF
730	Film	10 Ω	10	0.25	TR 191 10RK	R78, R79	Film	2.2 Ω	5	0.125	TR 212 2R2J
731, R32	Film	3.3 kΩ	10	0.25	ŤR 191 3K3K	R80	Film	22 kΩ	10	0.25	TR 191 22KK
733	Film	4.99 k Ω	1	0.25	TR 191 4K99F	R82	Film	10 kΩ	10	0.25	TR 191 10KK
734	Film	8.2 kΩ	10	0.25	TR 191 8K2K	R83	Film	150 Ω	10	0.25	TR 191 150RK
R35	Film	220 Ω	10	0.25	TR 191 220RK	R103	Film	1.82 kΩ	1	0.25	TR 191 1K82F
736	Film	10 kΩ	5	0.25	TR 191 10KJ	R104	Film	3.92 kΩ	1	0.25	TR 191 3K92F
738, R39	Film	5.62 kΩ	1	0.25	TR 191 5K62F	R107, R10	8 Film	32 Q	10	0.25	TR 191 33RK
74 0	Film	68.1 kΩ	1	0.25	TR 191 68K1F	R110	Film	1.5 kΩ	10	0.25	TR 191 1K5K
341	Film	2.21 kΩ	1	0.25	TR 191 2K21F	R112	Film	18.2 kΩ	1	0.25	TR 191 18K2F
R42, R43	Film	1.21 kΩ	1	0.25	TR 191 1K21F	R113	Film	4.7 kΩ	10	0.25	TR 191 4K7K
744	Film	2.7 kΩ	10	0.25	TR 191 2K7K	R114	Film	511 Ω	1	0.25	TR 191 511RF
R45, R46	Film	1. 21 kΩ	1	0.25	TR 191 1K21F	R115	Film	14 kΩ	2	0.25	TR 191 14KG
74 7	Film	2 kΩ	1	0.25	TR 191 2K0F	R116	Film	1.21 kΩ	1	0.25	TR 191 1K21F
748	Film	1 kΩ	10	0.25	TR 191 1K0K	R117	Film	1.5 kΩ	1	0.25	TR 191 1K5F
749	Film	2 kΩ	1	0.25	TR 191 2K0F	R118	Film	2.43 kΩ	1	0.25	TR 191 2K43F

.

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR	Capac	itors:	
						No.	Туре	Val
R119	Film	3.01 kΩ	1	0.25	TR 191 3K01F			
R120	Film	1 kΩ	1	0.25	TR 191 1K0F	C1	Ceramic	22
R121	Film	82.5 Ω	1	0.25	TR 191 82R5F	C2	Ceramic	12
R122, R		10 kΩ	1	0.25	TR 191 10KF	С3	Ceramic	10
R124	Film	2.21 kΩ	1	0.25	TR 191 2K21F	C4	Electrolytic	10
R126	Film	6.49 kΩ	1	0.25	TR 191 6K49F		LICCUONIC	100
7128	Film	10 Ω	10	0.25	TR 191 10RK	C5	Electrolytic	22
R129	Film	3 kΩ	5	0.25	TR 191 3K0J	C6	0	
7130	Film	1 0 Ω	10	0.25	TR 191 10RK		Ceramic	22
3131, R1		3.3 kΩ	10	0.25	TR 191 3K3K	C7	Ceramic	3.3
7133	Film	4.99 kΩ	1	0.25	TR 191 4K99F	C8	Ceramic	10
3134	Film	8.2 kΩ	10	0.25	TR 191 8K2K	C9	Ceramic	220
138, R1		5.62 kΩ	1	0.25	TR 191 5K62F	C10	Electrolytic	40
1140	Film	68.1 kΩ	1	0.25	TR 191 68K1F	010	Liecholytic	10,
1141	Film	2.21 kΩ	1	0.25	TR 191 2K21F	C11, C12	Ceramic	68 g
1142	Film	1.21 kΩ	1	0.25	TR 191 1K21F	C13	Ceramic	4.7
143	Film	1.21 kΩ	1	0.25	TR 191 1K21F	.		
144	Film	2.7 kΩ	10	0.25	TR 191 2K7K	C14, C15	Ceramic	0.15
145	Film	10 kΩ	1	0.25	TR 191 10KF	C16C18	Ceramic	10 0
146	Film	1 kΩ	1	0.25	TR 191 1K0F	C19	Ceramic	
147	Film	11.5 kΩ	1	0.25	TR 191 11K5F	0.0	Cerannic	220
48	Film	1 kΩ	1	0.25	TR 191 1K0F	C20	Electrolytic	47 µ
49	Film	10 Ω	10	0.25	TR 191 10RK	001.000	. .	
50	Film	1.62 kΩ	1	0.25	TR 191 1K62F	C21, C22	Ceramic	10 0
151	Film	332 Ω	1	0.25	TR 191 332RF	C23	Ceramic	10 0
152	Film	750 Ω	1	0.25	TR 191 750RF			100
153	Film	10 Ω	10	0.25	TR 191 10RK	C101	Ceramic	22 pi
154, R15	5 Film	5.6 kΩ	10	0.25	TR 191 5K6K	C102	Ceramic	120
156	Film	100 Ω	10	0.25	TR 191 100RK	C103	Ceramic	2 20
157	Film	3.32 kΩ	1	0.25	TR 191 3K32F	C104	Ceramic	3.3 p
158	Film	22 kΩ	10	0.25	TR 191 22KK	C105	Ceramic	10 00
159	Film	8.25 kΩ	1	4.25	TR 191 8K25F	C106	Ceramic	1 000
160	Film	10 kΩ	10	0.25	TR 191 10KK	C107, C108		68 pF
161	Film	2.74 kΩ	1	0.25	TR 191 2K74F	C109	Electrolytic	
162	Film	100 Ω	10	0.25	TR 191 100RK		-	100 <i>µ</i>
163	Film	7.15 kΩ	1	0.25	TR 191 7K15F	C110	Ceramic	0.1 μ
165	Film	3.3 kΩ	10	0.25	TR 191 3K3K	C111	Coromia	
166	Film	10 Q	10	0.25	TR 191 10RK	C112	Ceramic Ceramic	100 р 220 р

.___

	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR
	Ceramic	22 pF	5	40	TK 754 22pJ
	Ceramic	120 pF	5	40	TK 754 120pJ
	Ceramic	100 pF	10	40	TK 754 120p5
	Electrolytic	100 μF	_	15	TE 984 100M-PVC
	Electrolytic	22 µF	20 +50	10	TE 122 22MS
	Ceramic	2 200 pF	20	40	TK 724 2n2M
	Ceramic	3.3 pF	0.5	250	TK 755 3p3D
	Ceramic	1 000 pF	20	40	TK 724 1nM
	Ceramic	220 pF	5	40	TK 754 220pJ
)	Electrolytic	10 <i>µ</i> F	-20 +50	25	TE 124 10MS
, C12	Ceramic	68 pF	5	40	TK 754 68pJ
	Ceramic	4.7 pF	1	40	TK 754 4p7F
, C15	Ceramic	0.15 <i>µ</i> F	-20 +80	12.5	TK 782 150nZ
C18	Ceramic	10 000 pF	20	40	TK 724 10nM
	Ceramic	220 pF	5	40	TK 754 220pJ
	Electrolytic	47 μF	-20 +50	6.3	TE 121 47MS
C22	Ceramic	10 000 pF	20	40	TK 724 10nM
	Ceramic	10 000 pF	20 +80	32	TK 783 10nZ
ļ	Ceramic	22 pF	5	40	TK 754 22pJ
2	Ceramic	120 pF	5	40	TK 754 120pJ
}	Ceramic	2 200 pF	20	40	TK 724 2n2M
Ļ	Ceramic	3.3 pF	0.5	250	TK 755 3p3D
	Ceramic	10 000 pF	20	40	TK 724 10nM
	Ceramic	1 000 pF	20	40	TK 724 1n0M
, C108	Ceramic	68 pF	5	40	TK 754 68pJ
	Electrolytic	100 μF	_	15	TE 984 100M-PVC
	Ceramic	0.1 <i>μ</i> F	20 +80	32	TK 783 100nZ
	Ceramic	100 pF	10	40	TK 754 100pK
	Ceramic	220 pF	5	40	TK 754 220pJ

No	Туре	Value	Tolerance ± %	Max. load W	Standard ČSSR
	Film	2.21 kΩ	1	0.25	TR 191 2K21F
R20		10 kΩ	2	0.25	TR 191 10KG
R21	Film	10 kΩ	10	0.25	TR 191 10KK
R22	Film	100 kΩ	2	0.25	TR 191 100KG
R23	Film	100 kΩ	10	0.25	TR 191 10KK
R24	Film	5.6 kΩ	10	0.25	TR 191 5K6K
R25	Film	10 kΩ	10	0.25	TR 191 10KK
R26	Film	1 kΩ		0.5	TP 011 1K
R27	Trimmer		10	0.25	TR 191 1K0K
R28	Film	1 kΩ	2	0.25	TR 191 10KG
R29	Film	10 kΩ	2	0.25	TR 191 100KG
R30	Film	100 kΩ	2	0.25	TR 191 10KG
R31	Film	10 kΩ	2	0.25	TR 191 100KG
R32	Film	100 kΩ	2	0.20	TP 011 2K2
R33	Trimmer	2.2 kΩ	-	0.5	TR 191 51RJ
R34	Film	51 Ω	5		TR 191 3K9K
R35	Film	3.9 kΩ	10	0.25	

Са	n a	cit	' NI	rsi
υa	μa	011	. 0 1	

	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR
C1-C3	Ceramic	10 000 pF	20 +50	40	TK 744 10nS
C4	Ceramic	220 pF	20	40	ТК 754 220рМ
C5	Ceramic	10 000 pF	-20 +50	40	TK 744 10nS
C6	Electrolytic	50 <i>µ</i> F	_	10	TE 152 50M
C7	Ceramic	10 000 pF	-20 +50	40	TK 744 10nS
C8	Ceramic	100 pF	10	40	ТК 754 100рК

Further electrical components:

Component	Type-Value
Integrated circuit IO 1	MH 7400
Integrated circuit IO 2	MH 7472

Component	Type-Value
Diode E1, E3, E4, E6, E7, E8, E10–E12, E15, E17 Transistor E2, E14 Transistor E5, E9, E13, E16, E18	KA221 KC147TO92 KSY21

Montážní jednotka Монтажный блок Mounting unit 1AK 061 84

Resistors:

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
		100 Ω		0.5	TP 011 100
R1	Trimmer	150 Ω	5	0.25	TR 191 150RJ
R2	Film		2	0,25	TR 191 51R1G
R3, R4	Film	51.1 Ω	2	0.25	TR 191 100RG
R5	Film	100 Ω	2	0.5	TP 011 22KN
R6	Trimmer	22 kΩ	5	1	TR 153 1KB
R7	Film	1 kΩ	5	1	TR 153 1KB
R8	Film	1 kΩ		0.25	TR 191 221RF
R9, R10	Film	221 Ω	1	1	TR 193 300RJ
R11	Film	300 Ω	5		TR 192 121RG
R12, R13	Film	121 Ω	2	0.6	TR 191 91RJ
B14	Film	91 Ω	5	0.25	TP 011 3K3
R15	Trimmer	3.3 kΩ		0.5	
R16	Film	100 Ω	10	0.25	TR 191 100RK
R17, R18	Film	2.2 kΩ	5	2	TR 154 2K2J
R19, R20	Film	121 Ω	2	0.25	TR 191 121RG
R21	Film	1.2 kΩ	5	2	TR 154 1K2J
R22, R23	Film	180 Ω	5	1	TR 153 180B
R24, R25	Film	10 Ω	10	0.25	TR 191 10RK
R24, R23	Film	560 Ω	5	3	TR 183A 560RJ
	Film	, 100 Ω	, 5	0.25	TR 191 100RJ
R27, R28	Film	2.2 kΩ	5	2	TR 154 2K2B
R29, R30	Film	10 kΩ	5	0.25	TR 191 10KJ
R31 R51, R52	Film	10 Q	10	0.25	TR 191 10RK

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR	Capac	citors:
				· · · · · · · · · · · · · · · · · · ·		No.	Туре
R119	Film	3.01 kΩ	1	0.25	TR 191 3K01F		· · · · · · · · · · · · · · · · · · ·
R120	Film	1 kΩ	1	0.25	TR 191 1K0F	C1	Ceramic
R121	Film	82.5 Ω	1	0.25	TR 191 82R5F	C2	Ceramic
	123 Film	10 kΩ	1	0.25	TR 191 10KF	C3	Ceramic
R124	Film	2.21 kΩ	1	0.25	TR 191 2K21F	C4	Electrolyt
R126	Film	6.49 kΩ	1	0.25	TR 191 6K49F	04	Electrolyt
R128	Film	10 Ω	10	0.25	TR 191 10RK	C5	Electrolyt
R129	Film	3 kΩ	5	0.25	TR 191 3K0J		
R130	Film	10 Ω	10	0.25	TR 191 10RK	C6	Ceramic
R131, R	132 Film	3.3 kΩ	10	0.25	TR 191 3K3K	C7	Ceramic
R133	Film	4.99 kΩ	1	0.25	TR 191 4K99F	C8	Ceramic
R134	Film	8.2 kΩ	10	0.25	TR 191 8K2K	C9	Ceramic
R138, R1	39 Film	5.62 kΩ	1	0.25	TR 191 5K62F	C10	5 1
R140	Film	68.1 kΩ	1	0.25	TR 191 68K1F	010	Electrolyti
R141	Film	2.21 kΩ	1	0.25	TR 191 2K21F	C11, C12	Ceramic
R142	Film	1.21 kΩ	1	0.25	TR 191 1K21F	C13	Ceramic
R143	Film	1.21 kΩ	1	0.25	TR 191 1K21F		ooranne
R144	Film	2.7 kΩ	10	0.25	TR 191 2K7K	C14, C15	Ceramic
R145	Film	10 kΩ	1	0.25		C16-C18	. .
R146	Film	1 kΩ	1	0.25	TR 191 10KF		Ceramic
7147	Film	11.5 kΩ	1	0.25	TR 191 1K0F	C19	Ceramic
7148	Film	1 kΩ	1	0.25	TR 191 11K5F	C20	Electrolytic
3149	Film	10 Ω	10	0.25	TR 191 1K0F		
R150	Film	1.62 kQ	1	0.25	TR 191 10RK	C21, C22	Ceramic
R151	Film	332 Ω	1 ·	0.25	TR 191 1K62F	C23	O
R152	Film	750 Ω	1		TR 191 332RF	023	Ceramic
7153	Film	10Ω	10	0.25	TR 191 750RF	C101	Ceramic
R154, R15		5.6 kΩ	10	0.25	TR 191 10RK	C102	Ceramic
R156	Film	100 Ω	10	0.25	TR 191 5K6K	C103	Ceramic
R157	Film	3.32 kΩ	1	0.25	TR 191 100RK	C104	Ceramic
R158	Film	22 kΩ	10	0.25	TR 191 3K32F	C105	Ceramic
R159	Film	8.25 kΩ	1	0.25 4.25	TR 191 22KK	C106	
R160	Film	10 kQ	10		TR 191 8K25F		Ceramic
R161	Film	2.74 kQ	1	0.25	TR 191 10KK	C107, C108	
7162	Film	100 Ω	10	0.25	TR 191 2K74F	C109	Electrolytic
3163	Film	7.15 kΩ	10	0.25	TR 191 100RK	C110	Ceramic
R165	Film	3.3 kQ	10	0.25	TR 191 7K15F		
R166	Film	10 Ω	10	0.25	TR 191 3K3K	C111	Ceramic
		10.32	10	0.25	TR 191 10RK	C112	Ceramic

	Туре	Value	Tolerance ±%	Max. DC voltage V	Standard ČSSR
1	Ceramic	22 pF	5	40	TK 754 22pJ
2	Ceramic	120 pF	5	40	TK 754 120pJ
3	Ceramic	100 pF	10	40	TK 754 100pK
ļ	Electrolytic	100 μF		15	TE 984 100M-PVC
;	Electrolytic	22 µF	20 +50	10	TE 122 22MS
i	Ceramic	2 200 pF	20	40	TK 724 2n2M
	Ceramic	3.3 pF	0.5	250	TK 755 3p3D
	Ceramic	1 000 pF	20	40	TK 724 1nM
	Ceramic	220 pF	5	40	
D	Electrolytic	10 <i>µ</i> F	-20 +50	25	TK 754 220pJ TE 124 10MS
1, C12	Ceramic	68 pF	5	40	TK 754 68pJ
3 '	Ceramic	4.7 pF	1	40	•
4, C15	Ceramic	0.15 µF	-20 +80	12.5	TK 754 4p7F TK 782 150nZ
6-C18	Ceramic	10 000 pF	20	40	TK 724 10nM
)	Ceramic	220 pF	5	40	TK 754 220pJ
)	Electrolytic	47 µF	-20 +50	6.3	TE 121 47MS
, C22	Ceramic	10 000 pF	20	40	TK 724 10nM
	Ceramic	10 000 pF	20 +80	32	TK 783 10nZ
1	Ceramic	22 pF	5	40	TK 754 22pJ
2	Ceramic	120 pF	5	40	TK 754 120pJ
3	Ceramic	2 200 pF	20	40	TK 724 2n2M
4	Ceramic	3.3 pF	0.5	250	TK 755 3p3D
5	Ceramic	10 000 pF	20	40	TK 724 10nM
5	Ceramic	1 000 pF	20	40	TK 724 1n0M
7, C108	Ceramic	68 pF	5	40	TK 754 68pJ
)	Electrolytic	100 μF	-	15	TE 984 100M-PVC
)	Ceramic	0.1 μF	20 +80	32	TK 783 100nZ
	Ceramic	100 pF	10	40	TK 754 100pK
1	Ceramic	220 pF	5	40	TK 754 220pJ

Transformers and coils:

11010					
Component	Designation	Drawing No.	No. of tap	No. of turns	Wire Ø in mm
Coil	L1	1AK 606 33	1-2	14	0.4

.

Further electrical components:

Component	Type - Value	Drawing No.
Integrated circuit IO 1	MH 7404	
Integrated circuit IO 2, IO 101	MH 7400	
Integrated circuit IO 3	MH 7403	
Transistor E1, E2, E104, E106	BSX29	1AN 145 30
Diode E3, E8, E9, E11, E13,		
E17, E18, E21, E25, E27–E30.		
E32, E33, E34, E36, E39–E42,		
E44, E101, E103, E109, E111,		
E116, E120, E121, E122	KA221	
Diode E4, E12, E105, E107	KZ260/5V6	
Transistor E5, E31, E131	KSY71	
Diode E6, E20, E115	KZ260/6V8	
Transistor E7, E37, E43, E102	KSY82	
Transistor E10, E15,		
E112, E113	KF590	1AN 116 85
Diode E14, E110	KZ260/7V5	
Transistor E16, E108	KF525	
Transistor E19, E114	KF521	
Transistor E22, E117	KSY62B	
Transistor E23, E118	KFY16	
Transistor E24, E26, E119, E126	KC811	
Diode E35	KZ141	
Transistor E38, E129	KC147-TO92	
Diode E123	KZ260/11	4 4 4 4 4 4 5 6
Pair of transistors E124 + E125	BSX29	1AN 114 56
Diode E127, E128	KA206	
Transistor E130	KC149-TO92	

Horizontální zesilovač Усилитель горизонтального отклонения Horizontal amplifier 1AF 021 25

Resistors:

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard CSSR
	Film	22 Ω	5	0.25	TR 191 22RJ
R1	Film	18 Ω	5	0.25	TR 191 18RJ
R2	Film	3.32 kΩ	1	0.25	TR 191 3K32F
R3	Film	2.21 kΩ	1	0.25	TR 191 2K21F
R4	Film	2 kΩ	5	0.25	TR 191 2K0J
R5	Film	4.3 kΩ	5	0.25	TR 191 4K3J
R6	Film	806 Ω	1	0.25	TR 191 806RF
R7	Film	1.05 kΩ	1	0.25	TR 191 1K05F
R8	Film	806 Ω	1	0.25	TR 191 806RF
R9	Film	562 Ω	1	0.25	TR 191 562RF
R10		3.74 kΩ	1	0.6	TR 192 3K74F
R11, R12	Film	20 kΩ	1	0.6	TR 192 20KF
R13	Film	10 kΩ	_	0.5	TP 011 10K
R14	Trimmer	20 kΩ	1	0.6	TR 192 20KF
R15	Film	500 Ω		0.15	TP 160 10E 500R
R16	Potentiometer	820 (909) Ω	1	0.25	TR 191 820 (909)
R17	Film	220 (909) 52 220 Ω	5	, 0.3	TP 110 220
R18	Trimmer	220 s2 56 Ω	5	0.25	TR 191 56RJ
R19	Film	4.99 kΩ	1	0.25	TR 191 4K99F
R20	Film	4.99 kΩ 6.19 kΩ	1	0.25	TR 191 6K19F
R21	Film	549 Ω	t '	0.25	TR 191 549RF
R22	Film	549 Ω	1	0.25	TR 191 549RF
R23	Film	549 Ω 604 Ω	1	0.25	TR 191 604RF
R24	Film		5	0.25	TR 191 200RJ
R25	Film	200 Ω 1 k0	5	0.25	TR 191 1K0J
R26	Film	1 kΩ 39 kΩ	5	0.25	TR 191 39KJ
R27, R28	Film		- 1 - 1	0.25	TR 191 10KF
R29, R30	Film	10 kΩ	1	0.25	TR 191 590RF
R31	Film	590 Ω	1	0.25	TR 191 10KF
R32	Film	10 kΩ	5	0.20	TR 192 330RJ
R33	Film	330 Q	5 5	0.6	TR 192 180RJ
R34	Film	180 Ω	5 1	0.25	TR 191 475RF
R35	Film	475 Ω	1	0.25	TR 191 10KF
R36	Film	10 Ω 909 Ω	1	0.25	TR 191 909RF
R37	Film	90a X	•	0.20	

.

ι.

No.	Туре	Value	Tolerance ± %	Max. load W	Standard ČSSR
R53 R54 R55R58 R59 R60, R61 R62 R65, R66 R67 R69, R70 R71	Film Film Film Film Film Film Trimmer Film Film	82 Ω 22 Ω 1.6 kΩ 270 Ω 4.7 Ω 1.2 kΩ 330 Ω 220 Ω 43 Ω 56 Ω	5 10 5 10 5 5 - 5 5	0.25 0.25 2 1 0.25 1 2 0.5 2 0.6	TR 191 82RJ TR 191 22RK TR 154 1K6B TR 181A 270RJ TR 191 4R7K TR 181A 1K2J TR 182A 330RJ TP 011 220RN TR 182 43RJ TR 192 56RJ

Capacitors:

No.	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR
C1	Ceramic	33 000 pF	20 +80	32	TK 783 33nZ
C2	Ceramic	2 200 pF	20 +50	40	TK 744 2n2S
C4	Ceramic	33 pF	10	250	TK 755 22-K
C5	Ceramic	3.3 pF	0.5	400	ТК 755 ЗЗрК ТК 656 ЗрЗD
C6	Ceramic	100 pF	10	40	
C51	Ceramic	4.7 pF	0.5	250	TK 754 100pK TK 755 4p7D
C52, C53	Ceramic	1 000 PF	20 +-50	40	TK 744 1n0S
C65	Ceramic	330 pF	+50 -20 +50	250	TK 725 330pS

Transformers and coils:

Component	Designation	Drawing No.	No. of tap	No. of turns	Wire Ø in mm
Coil Core	L1 L2L5	1AK 685 12 1AA 436 36	1-2	4	0.3
Coil	L51, L52, L65, L6		1-2	3	0.3

Further electrical components:

Component			
Component	Type - Value	Drawing No.	
Pair of transistors E1 + E2, E3 + E4, E5 + E6 Transistor E51, E52	BFY90T/2 2N3866	1AN 116 19 1AN 145 86	

Zdroje Источники Power supplies

1AN 291 21

Resistors:

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R1	Film	470 kΩ	10	4	TD /
R2	Film	22 kΩ	10	1	TR 153 470RK
R3	Film	1 kΩ	10	0.25	TR 191 22KK
R4	Film	75 Ω	10	0.25	TR 191 1K0K
R5	Potentiometer	470 Ω		1	TR 153 75RK
R6	Film	270 Ω	10	1	1AN 736 03
R7	Film	15 Ω	10	0.6	TR 192 270RK
R50	Film	10 kΩ	5	0.125	TR 212 15RK
R51	Film	4.7 kΩ	5	0.25	TR 191 10KJ
R52	Film	100 Ω	-	0.25	TR 191 4K7J
R53	Film `	4.7 kΩ	5	0.25	TR 191 100RJ
R54	Film	825 Ω	5	0.25	TR 191 4R7J
355	Film		2	0.25	TR 191 825RG
756	Film	82.5 kΩ	2	0.25	TR 191 82K5G
757	Film	1 kΩ	5	0.25	TR 191 1K0J
758	Film	6.8 kΩ	5	1	TR 193 6K8J
159	Film	10 kΩ	0.5	0.125	TR 161 10KD-1
360	Film	64.2 kΩ	0.5	0.125	TR 161 64K2D-
161	Film	10 kΩ 52 kΩ	0.5	0.125	TR 161 10KD-1
162	Film	53 kΩ	• 0.5	0.125	TR 161 53K0D-1
65	Film	4.7 Ω 10 kQ	5	0.25	TR 191 4R7J
66	Film		5	0.25	TR 191 10KJ
67	Film	4.7 kΩ 100 Ω	5	0.25	TR 191 4K7J
68	Film	100 Ω 825 Ω	5	0.25	TR 191 100RJ
		020 M	2	0.25	TR 191 825RG

. ному изданию не подлежит.

	Туре	Value	Tolerance ± %	Max. load W	Standard ČSSR	No.	Туре	Value	Tolerance ± %	Max. load W	Standard CSSR
						R145	Film	2.2 MΩ	5	0.6	TR 192 2M2J
R69	Film	4.7 Ω	5	0.25	TR 191 4R7J	R146	Film	100 Ω	5	0.25	TR 191 100RJ
R70	Film	47 kΩ	5	0.25	TR 191 47KJ	·R147	Film	10 kΩ	5	0.25	TR 191 10KJ
R71	Film	1 kΩ	5	0.25	TR 191 1K0J	R148	Film	1 kΩ	5	0.25	TR 191 1K0J
R72	Film	2.7 kΩ	5	0.6	TR 192 2K7J	R140	Film	470 kΩ	5	0.25	TR 191 470KJ
R73	Film	10 kΩ	0.5	0.125	TR 161 10KD-1	R149 R150	Film	1 kΩ	5	0.25	TR 191 1K0J
R74	Film	25.8 kΩ	0.5	0.125	TR 161 25K8D-1	R150	Film	100 kΩ	5	0.25	TR 191 100KJ
R75	Film	37.9 kΩ	0.5	0.125	TR 161 37K9D-1		Film	1.2 kΩ	5	0.25	TR 191 1K2J
R76	Film	10 kΩ	0.5	0.125	TR 161 10KD-1	R152	Film	1 kΩ	5	0.25	TR 191 1K0J
R77	Film	4.7 Ω	5	0.25	TR 191 4R7J	R153	Trimmer	220 Ω	_	0.5	TP 095 220
R80	Film	470 Ω	5	0.25	TR 191 470RJ	R154	Film	1 kΩ	5	0.25	TR 191 1K0J
R81	Film	10 kΩ	5	0.25	TR 191 10KJ	R155		3.3 kΩ	_	0.5	TP 095 3K3
R82	Film	1.2 kΩ	5	0.25	TR 191 1K2J	R156	' Trimmer	1.21 kΩ	· 1	0.25	TR 191 1K21F
R83	Film	270 Q	5	0.25	TR 191 270RJ	R160	Film	1.21 ksc 47 kΩ	5	0.25	TR 191 47KJ
R84	Film	10 kΩ	5	0.25	TR 191 10KJ	R162	Film	47 κ <u>5</u> 2 47 Ω	5	0.25	TR 191 47RJ
R85	Trimmer	2.2 kΩ	_	0.5	TP 095 2K2N	R163, R1		47 Ω 2 kΩ	5	0.25	TR 191 2K0J
	Film	820 Ω	5	0.6	TR 192 820RJ	R165	Film		1	0.25	TR 191 2K21F
R90 R91	Film	3.9 kΩ	5	0.25	TR 191 3K9J	R166, R1		2.21 kΩ 100 Ω	5	0.25	TR 191 100RJ
R91	Film	4.7 kΩ	5	0.25	TR 191 4K7J	R168	Film		5	0.25	TR 191 15KJ
R92	Film	100 Ω	5	0.25	TR 191 100RJ	R169	Film	15 kΩ 3.83 kΩ	1	0.25	TR 191 3K83F
	Film	464 Ω	2	0.25	TR 191 464RG	R170	Film		1	0.6	TR 192 22K1F
R94	Film	10 kΩ	2	0.25	TR 191 10KG	R171	Film	22.1 kΩ	5	0.25	TR 191 100RJ
R95	Wire-wound	0.5 Ω	2		1AA 669 26	R172	Film	100 Ω	5	0.25	TR 191 270RJ
R96	Film	10 kΩ	2	0.25	TR 191 10KG	R173	Film	270 Ω	5	0.25	TR 191 1K0J
R97	Film	10 kΩ	0.5	0.125	TR 161 10KD-1	R174, R		1 kΩ	5	0.25	TR 191 910RJ
R98	Film	31.2 kΩ	0.5	0.125	TR 161 31K2D-1	R176	Film	910 Ω	5	0.20	TR 192 39KJ
R99	Film	10 kΩ	0.5	0.125	TR 161 10KD-1	R177	Film	39 kΩ	5	0.25	TR 191 191 100RJ
R100	Film	10.6 kΩ	0.5	0.125	TR 161 10K6D-1	´ R178	Film	100 Ω	5 5	0.25	TR 192 5K6J
R101		4.7 kΩ	5	0.25	JR 191 4K7J	R179	Film	5.6 kΩ		0.25	TR 191 150RK
R105	Film	4.7 KS2 100 Ω	5	0.25	TR 191 100RJ	R180	Film	150 Ω	10		TP 190 12E 2M5N
R106	Film	681 Ω	2	0.25	TR 191 681RG	R200	Potentiometer	2.5 MΩ	-	0.2	TR 191 100KJ
R107	Film	4.7 Ω	5	0.25	TR 191 4R7J	R201	Film	100 kΩ	5	0.25	TR 153 3M3J
R108	Film	4.7 Ω 470 Ω	5	0.25	TR 191 470RJ		207 Film	3.3 MΩ	5	1	TR 153 3M33 TR 152 1M0K
R109	Film		5	0.25	TR 191 4K75F	R208	Film	1 MΩ	10	0.5	TR 152 100K
R110	Film	4.75 kΩ 3.32 kΩ	0.5	0.25	TR 161 3K32D-1	R209	Film	15 kΩ	10	0.25	TR 153 3M3J
R111	Film	3.32 kΩ 7.15 kΩ	0.5	0.125	TR 161 7K15D-1	R210	Film	3.3 MΩ	5	1	TR 215 1R0K
R112	Film	7.15 KΩ 5.11 kΩ	0.5	0.125	TR 161 5K11D-1	R211	Film 、	1Ω	10	1	TR 152 2M2J
R113	Film	5.11 κΩ 10 kΩ	-	0.120	TP 095 10K		221 Film	2.2 MΩ	5	0.5	TP 190 12E 2M5N
R140	Trimmer	10 κΩ 560 kΩ	5	0.25	TR 191 560KJ	R222	Potentiometer	2.5 MΩ		0.2	TR 154 6M2J
R141	Film	2.2 MQ	5	0.6	TR 192 2M2J	R223, F	224 Film	6.2 MΩ	5	2	
R142, R1 R144	143 Film Film	2.2 MΩ 200 kΩ	5	0.25	TR 191 200KJ	R225	Film	2.2 MΩ	5	0.5	TR 152 2M2J

No.	Туре	Value	Tolerance ± %	Max. Ioad W	Standard ČSSR
R227	Film	22 kΩ	10	0.25	TR 191 22KK
R228	Potentiometer	10 kΩ	-	1	TP 195 12E 10KN
R229	Film	10 kΩ	10	0.25	TR 151 10KK
R230	Film	15 kΩ	10	0.25	TR 151 15KK
R231	Potentiometer	10 kΩ		t	TP 195 12E 10KN
R232	Potentiometer	100 kΩ	_	0.2	1AN 736 01
R233	Film	4.3 kΩ	5	0.6	TR 192 4K3J
R234	Potentiometer	100 kΩ		0.2	TP 190 12E 100KN
R235	Potentiometer	5 kΩ		0.2	1AN 736 00

.

Capacitors:

Ņo.	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR
C1	Class Y				TC 241
C2	Electrolytic	20 <i>µ</i> F		160	TE 990 20M-PVC
C3	Electrolytic	20 <i>µ</i> F	-	160	TE 990 20M-PVC
C4-C6	Electrolytic	500 µF	-	35	TE 986 G5-PVC
C7, C8	Electrolytic	500 μF		35	TE 986 G5-PVC
C9	Electrolytic	1 000 <i>µ</i> F		15	TE 984 1G-PVC
C10	Electrolytic	1 000 <i>μ</i> F	_	15	TE 984 1G-PVC
C11	Electrolytic	680 <i>µ</i> F	—	70	TE 678 680µ
C12-C15	Electrolytic	220 <i>µ</i> F		160	TE 680 220µT
C16, C17	Electrolytic	680 <i>µ</i> F		100	TE 679 680µ
C18-C21	Electrolytic	2.2 mF		35	TE 676 2m2
C22	Electrolytic	3.3 mF	_	15	TE 674 3m3
C23	Ceramic	0.1 <i>μ</i> F	20 +80	32	TK 783 100nZ
C20	Electrolytic	10 <i>μ</i> F		50	ΤΕ 156 10μΑ
C50	Ceramic	4 700 pF	20 +50	40	TK 744 4n7S
C51	Ceramic	10 000 pF	-20 +50	250	TK 745 10nS
C52	Ceramic	100 pF	10	250	TK 755 100pK
C53	Electrolytic	10 <i>µ</i> F	-	160	TE 990 10M-PVC
C54	Ceramic	10 000 pF	20 +50	250	TK 745 10nS
C65	Ceramic	4 700 pF	-20 +50	40	TK 744 4n7S
C66	Ceramic	10 000 pF	20 +-50	250	TK 745 10nS

No.	Туре	Value	Tolerance ± %	Max. DC voltage V	Standard ČSSR
C67	Ceramic	100 pF	10	250	TK 755 100pK
C68	Electrolytic	4.7 µF		100	TF 012 4µ7T
C80	Electrolytic	22 <i>µ</i> F	-	40	TF 010 22µT
C90	Ceramic	4 700 pF	-20 +50	40	TK 744 4n7S
C91	Electrolytic	22 <i>µ</i> F		40	TF 010 22μT
C105	Ceramic	4 700 pF	20 +50	40	TK 744 4n7S
C106	Electrolytic	22 <i>µ</i> F	-	40	TF 010 22μT
C140	Electrolytic	2 μF		160	TE 990 2M-PVC
C141, C142	P.E.T.	0.47 μF	10	160	TC 279 M47K
C143	Electrolytic	50 μF	_	35	TE 986 50M-PVC
C160	Ceramic	100 pF	10	40	TK 754 100pK
C162	Ceramic	100 pF	10	40	TK 754 100pK
C163	Ceramic	22 000 pF	20 +50	40	TK 744 22nS
C164, C165	Trimmer	5 pF		400	WK 701 09
C166	Ceramic	1 000 pF	—20 +50	250	TK 725 1n0S
C167	Tubular	0.1 μF	-	250	TC 182 M1
C188	Ceramic	10 000 pF	20 +50	250	TK 745 10nS
C169	Electrolytic	10 μF	—	15	TE 984 10M-PVC
C170	Ceramic	3.3 pF	0.5	250	TK 755 3p3D
C171	Ceramic	10 000 pF	20 +50	250	TK 745 10nS
C200	Ceramic	1 000 pF	20 +50	250	TK 745 1nS
C202	Ceramic	10 000 pF	20 +50	2,000	SK 733 20 10nS
C201,					
C203-C205		10 000 pF		3 000	TGL 116 55 10n 3000V
C206, C208	Ceramic	470 pF		10 000	TGL 116 55 470p 10000\
C207	Ceramic	4 700 pF	-	6 300	TGL 116 55 4n7 6300V
C209	Ceramic	1 000 pF	-	6 300	TGL 116 55 1n0 6300V
C210	Electrolytic	500 µđF	-	10	TE 982 500µ-PVC
C211	Ceramic	1 000 pF	20	2 000	SK 739 20 1nM
C212, C213		10 000 pF	-	3 000	TGL 116 55 10n 3000V
C214-C216		68 000 pF	10	160	TC 279 68nK
C220	Ceramic	1 000 pF		6 300	TGL 116 55 1n0 6300V

Transformers and coils:

Component	Designation	Drawing No.	No. of tap	No. of turns	Wire C ³ in mm
Transformer		1AN 667 69			
		1AK 626 44	J11	374	0.475
coil		1141 020	III—IV	374	0.475
			V-VI	34	0.6
		1AK 626 42	9-10	320	0.355
coil			13-14	60	0.9
			17-18	28	0.8
		1AK 626 43	78	110	0.355
coil			11-12	190	0.5
			15-16	60	0.9
			19-20	28	0.8
Transformer		1AN 667 70			
ransionnei			1-2	3	0.4
10		1AK 617 87	3-4	4	0.63
coil			5-6	640	0.1
			7-8	600	0.1
			8-9	572	0.1
			10-11	6	0.15
Choke-coil	L140	1AN 650 89			
Coil	L200	1AK 598 51	1-2	3300	0.125
Coll	L200	1AK 598 52	1-2	4700	0.125

.

Further electrical components:

Component	Type - Value	Drawing No.
Integrated circuit IO 20	MA 7812	
Integrated circuit IO 50, IO 65, IO 80, IO 90, IO 105	MAA741	
Diode E1-E4, E9-E12	KY132/300	
Diode E5-E8	KY132/600	
Diode E13-E16	KY132/150	
Diode E17-E18	KY132/80	
Transistor E20, E21	KUY12	
Transistor E22	KD616	
Transistor E23	KD605	

Component	Type - Value	Drawing No.
Transistor E24	KU611	
Diode E25	LQ1732	
Transistor E51, E66, E105, E106,		
E145	KFY34	
Transistor E50, E65	BF257	1AN 145 77
Zener diode E52, E67	KZ260/8V2	
Diode E53, E68, E80, E96, E107	KY130/150	
Zener diode E54, E55, E69, E70	KZ260/12	
Diode E56, E57, E71, E72, E94,		
E95, E108, E109, E146, E147,		
E160	KA261	
Zener diode E90	KZ260/5V6	
Transistor E91, E92, E143	KFY16	
Zener diode E93	KZ260/6V8	
Transistor E141	KC149-TO92	
Diode E140, E142, E144	KA224	
Transistor E161	KSY62B	
Diode E162, E167, E168	KA263	
Transistor E163	BSX29	1AN 145 30
Transistor E164	KF423	
Transistor E165	KF422	
Zener diode E166	KZ260/6V2	
Transistor E200	KD502	1AN 115 06
Diode E201-E205, E220, E221	KYX28/15	
Diode E206-E209	KY196	
Zener diode E211	KZ260/18	
CRT E216	11Л0101И	1AN 14581
Incandescent lamp Ž1, Ž2	7 V/0.3 A	.
Fuse cartridge P1	T 630mA for 220 V	ČSN 35 4733.3
Fuse cartridge P1	T 1.25 A for 120 V	ČSN 35 4733.3
Fuse cartridge P140	F1A	ČSN 35 4733.2

Součásti, které jsou označeny výkresovým číslem 1AN. ..., jsou vybírány tak, aby odpovídaly speciálním přespisům.

.

Детали, обозначенные 1AN. . ., выбираются согласно специальным предписаниям.

Components designated with drawing number 1AN. . . are selected according to special regulations.

SEZNAM PŘÍLOH

Desky s plošnými spoji

booky o pio.	., .,	ini shoi		
BM 566A/1		1AF 01		Montážní jednotka
BM 566A/2		1AF 02 1AF 02		Kalibrátor Montážní jednotka
		1AF 02		Montážní jednotka
BM 566A/3	—	1AF 02	1 17	Stabilizátory
BM 566A/4		1AF 02	1 18	Zesilovač Z
BM 566A/5		1AF 02	1 19	Zesilovač
BM 566A/6		1AF 02	1 20	Koncový zesilovač
		1AF 02	1 21	Synchronizační
				zesilovač
BM 566A/7	-	1AF 02	1 22	Přepínač funkcí
		1AF 02	1 231	Spouštěcí obvody
BM 566A/8		1AF 02		Rozmítací generátory
		1741 02	124	nozimaci generatory
BM 566A/9		1AF 02	1 25	Horizontální zesilovač
BM 566A/10		1AF 02	1 26	Řídicí obvod
		1AF 02		Montážní jednotka

ПЕРЕЧЕНЬ ПРИЛОЖЕНИЙ

Платы с печатным монтажом

- 1AF 021 27

LIST OF ENCLOSURES

Printed circuit boards

BM 566A/1		1AF			Монтажный блок	BM 566A/1		1AF			Mounting unit
		1AF	021	141	Калибратор		—	1AF	021	141	Calibrator
					Монтажный блок	BM 566A/2		1AF			Mounting unit
BM 566A/2	<u> </u>	1AF	021	15	Монтажный блок			1AF			Mounting unit
		1AF			Стабилизаторы	BM 566A/3		1AF	021	47	
BM 566A/3		1AF			Усилитель				021	17	Stabilizers
						BM 566A/4		1AF			Z Amplifier
BM 566A/4		1AF			Усилитель	BM 566A/5		1AF			Amplifier
BM 566A/5		1AF			Оконечный усилитель	BM 566A/6	•	1AF	021	20	Final amplifier
BM 566A/6		1AF	021	20	Усилитель			1AF			Synchronizing ampli-
		1AF	021	21	синхронизации			., .,	01	~ 1	fier
					Переключатель	BM 566A/7		1AF	021	22	Function selector
BM 566A/7		1AF (021	22	рода работ				02,		i difetion selector
					Схемы запуска		—	1AF	021	231	Triggering circuits
		1AF (021	231	Генераторы качаю-	BM 566A/8		1AF	021		Sweeping generators
BM 566A/8		1AF (021	24	щейся частоты				021	L 1	enceping generators
					Усилитель горизон-	BM 566A/9		1AF	021	25	Horizontal amplifier
BM 566A/9		1 AF (021	25	тального отклонения					20	
					Схема управления	BM 566A/10	-	1AF	021	26	Control circuit
BM 566A/10		1AF (021		Монтажный блок			1AF			Mounting unit
	_	1AF ()21					., .			mounting unit

Schémata zapojení

BM 566A/11 - 1X1 830	22	Osciloskop BM 566A	Схемы включения
BM 566A/12 - 1X1 830	22	Osciloskop BM 566A	BM 566A/11 - 1X1 8
BM 566A/13 - 1AF 021		Kalibrátor	BM 566A/12 - 1X1 8
BM 566A/14 - 1AF 021	19	Zesilovač	BM 566A/13 - 1AF
BM 566A/15 - 1AF 021		Zesilovač	BM 566A/14 - 1AF
BM 566A/16 - 1AF 021		Zesilovač	BM 566A/15 - 1AF
BM 566A/17 - 1AF 021	21	Synchronizační	BM 566A/16 - 1AF (
		zesilovač	BM 566A/17 - 1AF (
BM 566A/18 - 1AF 021		Spouštěcí obvody	
		Rozmitací obvody	BM 566A/18 - 1AF (
BM 566A/20 - 1AF 021	25	Horizontální zesilovač	BM 566A/19 - 1AF (
		v .	BM 566A/20 - 1AF (
		Rídicí obvod	
			BM 566A/21 - 1AF (
			BM 566A/22 - 1AK (
BM 566A/24 - 1AN 291	21	Zdroje	BM 566A/23 - 1AN 2
BM 566A/19 - 1AF 021 BM 566A/20 - 1AF 021 BM 566A/21 - 1AF 021 BM 566A/22 - 1AK 061 BM 566A/23 - 1AN 291 BM 566A/24 - 1AN 291	24 25 26 84 21	Rozmitací obvody Horizontální zesilovač Řídicí obvod Montážní jednotka Zdroje Zdroje	BM 566A/19 - 1, BM 566A/20 - 1, BM 566A/21 - 1, BM 566A/22 - 1,

Sec. A. Sec. 1

-	схемы включения		
4		Осциллоскоп ВМ 566А	BM 566
4	BM 566A/11 - 1X1 830 22	Осциллоскол ВМ 566А	BM 566
	BM 566A/12 - 1X1 830 22	Калибратор	BM 566
	BM 566A/13 - 1AF 021 141	Усилитель	BM 566
	BM 566A/14 - 1AF 021 19	Усилитель	BM 566
	BM 566A/15 - 1AF 021 19	Усилитель	BM 566
	BM 566A/16 - 1AF 021 19	Усилитель	BM 566
	BM 566A/17 - 1AF 021 21	синхронизации	
		Схемы запуска	BM 566
	BM 566A/18 - 1AF 021 231	Схемы качания	BM 566
ιČ	BM 566A/19 - 1AF 021 24	Усилитель горизон-	BM 566
	BM 566A/20 - 1AF 021 25	тального отклонения	
		Схема управления	BM 566
	BM 566A/21 - 1AF 021 26	Монтажный блок	BM 566
	BM 566A/22 - 1AK 061 84	Источники	BM 566
	BM 566A/23 - 1AN 291 21	Источники	BM 566
	BM 566A/24 - 1AN 291 21		

Connecting diagrams

	Oscilloscope BM 566A Oscilloscope BM 566A Calibrator
	Amplifier Amplifier Amplifier
BM 566A/17 - 1AF 021 21	Synchronizing ampli- fier
BM 566A/19 - 1AF 021 24	Triggering circuits Sweeping generators Horizontal amplifier
BM 566A/21 — 1AF 021 26 BM 566A/22 — 1AK 061 84 BM 566A/23 — 1AN 291 21	Control circuit Mounting unit Power supplies Power supplies

Změnový list - Osciloskop BM 566A

- str. 5 V odstavci 3.1.4. se doplňuje údaj
 v sedmém řádku.
 Správné znění:
 Fřekmit impulsu: 5 % (citlivost
 l0 mV/dílek)
- str. 45 Ve druhém odstavci se mění označení ochranných členů "R112, ElO1 (R7, El)" na "R112, C104 (R7, C2)".
- str. 46 Kapitola 8.5.3. Tvarovací stupeň byl konstrukčně přepracován.

Uvádíme nový popis zapojení.

8.5.5. Tvarovací a řídicí stupeň

Základem je diferenciální zesilovač Elll, Ell2 (případně Ell. El2 v základně B) a emitorv napájenými ze zdroje stálého proudu kladné polarity B154+R161 (R48+R54). Kolektory tranzistorů diferenciálního zesilovače jsou připojeny k neinvertujícím vstupům 9 a 13 zesilovačů v ECL integrovaném obvodu IO 101 (IO 1). Na tyto vstupy jsou dále připojeny zpětnovazební odpory R171 a R174 (R67 a R70) zavádějící kladnou zpětnou vazbu a dále zdroje stálého proudu záporné polarity tvořené odporv R170 a R173 (R66 a R69). Na vatup 9 je dále přes. spinaci stupen E115, E116 (E17, E18) připojen zdroj stálého proudu kladné polarity tvořený B168 (K64). Spínací stupeň je řízen hradlovacím impulses přes svorku 4 (10) z rozmítacího generátoru.

Na výstup 2 v IO 1 (IO 101) je uvnitř IO připojen smitor tranzistoru bez pracovního odporu;

Лист изменения - Осциллоскоп вы 566А

стр. 5 - "выброс импульса" (раздел 3.1.4., восъмая строка) следует читать:

5 % (чувствительность 10 мВ/деление)

- стр. 45 Второй абвац сверху запитные схемы "R112, E101 (R7, E1)" изменяются на "R112, C104 (R7, C2)".
- стр. 46 Раздел 8.5.3. Каскад формирования - переработана конструкция.

Приводим новое описание соединения.

8.5.3. Каскад формирования и управления

Основой является лифференциальный усилитель E111, E112 (NAM E11, E12 B Gage B) C SMATTELANA ПИТВЕМЫМИ ОТ ИСТОЧНИКА ПОСТОЯННОГО ТОКА ПОЛОДИтельной полярности R154 + R161 (R48 + R54). Коллекторы транаисторов диференциального усилителя соединены с неинвертирущими входами 9 и 13 усилителей в ЕСІ интегральной скеме ИС 101 (ИС 1). К этим входам также подкдычены сопротивления обратной связи R171 и R 174 (R67 и R70), вводящие положительную обратную связь. и также источники постоянного тока отрицательной подярности состояные из сопротивлений R170 и R173 (R66 и R69). На вход 9 через каскад переключения Е115, Е116 (Е17, Е18) подключен источных постоянного тока положительной полярности состояния из R168 (R64). Каская переключения управляется вентильным импульсом через зажим 4 (10) из генератора развертки.

На выходе 2 в ИС 1 (ИС 101) внутьи ИС подключен эмиттер транзисто а без рабожего соплоти-

and the second

Updating information for the BM 5664 oscilloscope

- page 5 "Pulse overshoot" (section 3.1.4, the seventh line) has to be read as follows: 5% (sensitivity 1C mV/division) page 45 - / section 8.5.2./ Frotective elements designation
 - " R112, E101,/R7,E1/" changes to: "R112, E104,/R7, E2/".
- page 46 section 8.5.3. The shaping stage is redesigned. New wiring description is given below:

The shaping stage is formed by a differential amplifier E111, E112 / E11, E12 in B channel/ with emitters powered from a constant positive current source R154+R161 /R48+R54/. Collectors of differential amplifier transistors are conmected to non-invertive inputs 9 and 13 of amplifiers in ECL integrated circuit IC 101 /ID 1/. Further, to these inputs are connected feedback resistors R171 and R174 /R67 and R70/ for a positive feedback and a constant current sources with negative polarity formed by R 170 and R173 /R66 and R69/ resistors. Via the switching stage E115 , E116 /E17, E18/ a constant positive source , formed by R168 /R64/ , is connected to the 9 input jack. The switching stage is controlled by a gating puls coming from a sweeping generator through connector 4/10/.

Internal arrangement of the IO 1 / IO 101/ integrated circuit shows an emitter without a load resistor connected to the output 2. The base-emitter junction serves as one-way gate circuit. The base of this transistor is controlled via the non-invertive input 4 from the cutput 6 of integrated circuit IC 1 /IC přechod báze - emitor pak pracuje jako jednocestný ventil. Báze tohoto tranzistoru je řízena přes neinvertující vstup 4 z výstupu 6 10 1 (IO 101). Invertující vstupy váech tří zesilovačů jsou připojeny na vnitřní zdroj referenčního napětí (svorka 11). Výstupní řídicí impuls je odebírán z vývodu 14 IO 1 (IO 101) přes dělič R176, R177 (R72, R73) do rozmítacího generátoru. Je-li hradlovací impuls na svorca 4 (10) v úrovni L. je zdroj stálého proudu R168 (R64) připojen přes otevřený tranzistor E116 (E18) na vstup 9 IO 1 (IO 101); tim jsou vystupy 6 a 2 neinvertujících zesilovačů uvedeny do stavu s vyšším napětím a výstup celého stupně (vývod 14 IO) do stavu s nižším napětím. Tím je zastaven rozmítací generátor bez ohledu na spouštěcí signál na bázích difereciálního zesilovače B111, B112 (E11, B12).

Přejde-li hredlovací impuls na úroveň H, je zdroj stálého proudu R168 (R64) odpojen a obvod může být řízen spouštěcím signálem na bázích diferenciálního zesilovače. Je-li napětí báze Ell2 (El2) nižší než napětí báze Elll (E11), nedojde ke změně stavu na výstupech 10 6. 2 ani 14. Je-li však napětí báze Ell2 (E12) vyšší než napětí báze B111 (E11). dojde k překlopení výstupu 6 v IO do stavu s nižěím napětím; tím je přes vstup 4 uzavřen jednocestný ventil v IO na výstupu 2. Vyšším proudem Elll (Ell) je váak udržován výstup 14 stále na nižším napětí. Teprve je-li potom opět napětí báze B112 (B12) nižší než napětí báze Elll (Bll), dojde k překlopení výstupu 14 do stavu s vyšším napětím, kterým je spuštěn aktivní běh rozmítacího generátoru. V tomto stavu zůstane obvod bez ohledu na spouátěcí signál na bázích diferenciálního zesilovače

вления; лецеход база - амиттер работает в качество одноходового вентиля. База этого тланэистора управляется чегез неинвертирующий вход 4 из выхода 6 ИС 1 (ИС 101). Инвертисующие воо-**АН ВСЕХ ТРЕХ УСИЛИТЕЛЕЙ ПОДКЛЮЧЕНЫ К ЕНУТ**СЕЗНЕму источенку опорного запряжения (зажим 11). Выхолной импульс управления снимается из выхода 14 ИС 1 (ИС 101) через делитель P176, R177 (1972, 1973) в гезератор развертки. Если вентильный импульс на зажиме 4 (10) находится в уровне L. то источник постоянного тока R16c (Re4) полключен через отпертый транзистор Ell6 (El8) на вхол 9 ИС 1 (ИС 101). В следствие того выходы 6 и 2 неинвертирующих усилителей приводятся в состояние с высшим напряжением, а выход целого каскада (выход 14 ИС) - в состояние с бодее низким напряжением. В результате этого останавливается генератор развертки независимо от сигнала пуска на базах дифференциального усилителя E111, E112 (E11, E12).

Если вентильный импульс перейдет в удовень Е. то источник постоянного тока R168 (R64) отключен и схема может управляться сигналом пуска на базах лифференциального усилителя. Если напряжение базы E112 (E12) ниже напряжения базы E111 (E11), то не произойдет перемена состояния на выходах ИС 6, 2 ни 14. Если напряжение базы E112 (E12) выше напряжения базы E111 (E11), то произойдет переключение выхода 6 в ИС в состояние с более низким напряжением. Этим одноходовой вентиль в ИС на выходе 2 запирается через вход 4. Высшим током Elll (Ell) выход 14 держится на бодее низком напряжении. Если потом опять напряжение базы Е112 (Е12) ниже напряжения базы Е111 (Е11), то осуществится переключение выхода 14 в состояние с высним напряжением, которым происходит пуск активного бега генератора развертки. В этом состоянии схема остается (независимо от сигнала пуска)

101/. Inverted inputs of all 2 amplifiers ach connected to the internal voltage reference / pin 11/. Output control puls is fed from nin 14 of IO 1 / 10101/ via R 176, R 177 /R 72, R 73/ divider to the sweeting generator. When gating puls at pin 4 ,10/ is 1 . the constant current source R 168 JR64 is connected via opened transistor. E 116 /F 18/ to the input 9 of ID 1 / JC 181.. The outputs 6 and 2 of non-invertive amplifters now have a htoher voltage level and output of the whole stage / pin 14/ is L. It interrupts the sweeting generator even if triagering pulses at the base of differential amplifier E 111, E 112 / E11, E12/ are present. When the dating puls converts to H. the constant power source R 168 / R64/ 1s switched off and its function can be controlled by triggering pulses connected to the base of differential amplifier. As long as the voltage level at E 112 / E 12/ base is lower than E 111 / E11/ base voltage , there is no change at the ID 6, 2 and 14 outputs. If, however, the voltage at E112 / E12/ is higher than the base voltage E 111 / E11/, the output 6 of IO switches over from H to L and via input 4 the one-way gate at the ID output 2 closes. By means of higher current value flowing through E111 / E11/ the output 14 is still held at L level. Only if the base voltage of E112 / E12/ is lower than base voltage of E 111/ E11/ , the output 14 switches over to H level . activating the sweeping generator. The circuit remains now in this state irrespective of trigger pulses coming to the bases of differential amplifier E 111 . E 112 / E11. E 12/ till arrival of L gating puls at terminal 4 / 10/. Thus. the circuit is being set to its original state, and the active run of sweeping geElil, Ell2 (Ell, El2) až do příchodu úrovně L hr-dlovacího impulsu na svorku 4 (10). Tím je obvod opět uveden do výchozího stavu a je zastaven aktivní běh rozmítacího průběhu.

Je-li v základně B stisknuto tlačítko "AUT"
5 9.1, dojde k podstatnému snížení hodnoty stálého proudu do emitorů tranzistorů Ell a El2.
V tomto případě je výstup celého stupně 14 převeden do stavu s vyšším napětím ihned po přivedení úrovně H na hradlovací vstup 10 bez ohledu na spouštěcí signál na bázích tranzistorů Ell a El2.

str. 47 - Kapitola 8.5.4. "Řídicí zesilovač"

první odstavec:

"z řídicí tunelové diody Ell3 (El5)" se mění na "z tvarovacího a řídicího stupně IO 1 (IO 101)"

druhý odstavec:

"je zapojena řídicí tunelová dioda" se mění na "je zapojen výstup tvarovacího a řídicího stupně".

str. 52 - Kapitola 8.5.12. "Součinový obvod"

druhý odstavec

"řídicí tunelová dioda El3" se mění na "tvarovací a řídicí stupeň"

třetí odstavec

"tunelové diody Ell]" se mění na "tvarovacího a řídicího stupně (IO 1)"

str. 90 - Technické údaje sondy BP 7721 Vstupní kapacita asi 25 pF se mění na: "<45 pF + vstupní kapacita osciloskopu". на базах дифференциального усилителя Elll, Ell2 (Ell, El2) до тех пор, пока не придет уровень вентильного импульса на зажим 4 (10). Этим самим схема опять приводится в исходное состояние и активный бег развертки останавливается.

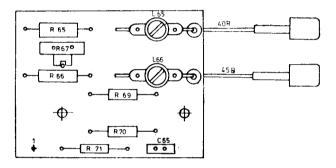
Если в базе В нажата кнопка "А Т" . Э.1, проивойдет существенное понижение значения постоянного тока в эмиттерах транзисторов Ell и El2. В этом случае выход целого каскада 14 переведен в состояние с выстим напряжением сразу после подвода уровня Н на вентильный вход 10 невезисимо от сигнала пуска на базах транзисторов Ell и El2.

стр. 47 - Раздел <u>0.5.4.</u> "Управляющий усилитель" первый абдац: "от управляющего туннельного диода Ell3 (El5)" следует читать "от формирующего и управляющего каскада ИС 1 (ИС 101)"

второй абзац:

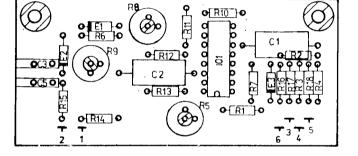
"К его левому входу подключен управляющий сигнальный диод" следует читать "... подключен выход формирующего и управляющего каскада".

стр. 52 - Раздел <u>8.5.12.</u> "Схема произведения"

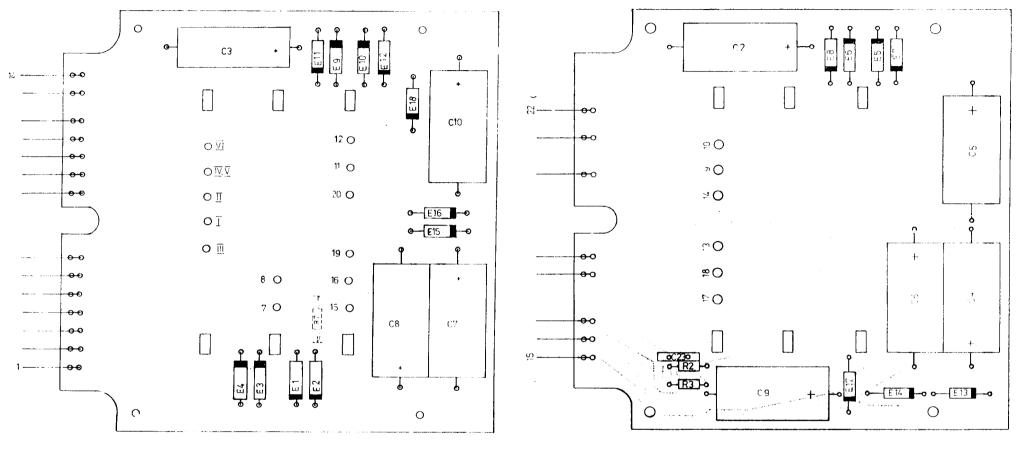

<u>atopon adaau:</u>

"туннельный диод Ell3" следует читать "формирующий и управляющий каскад (ИС 1)".

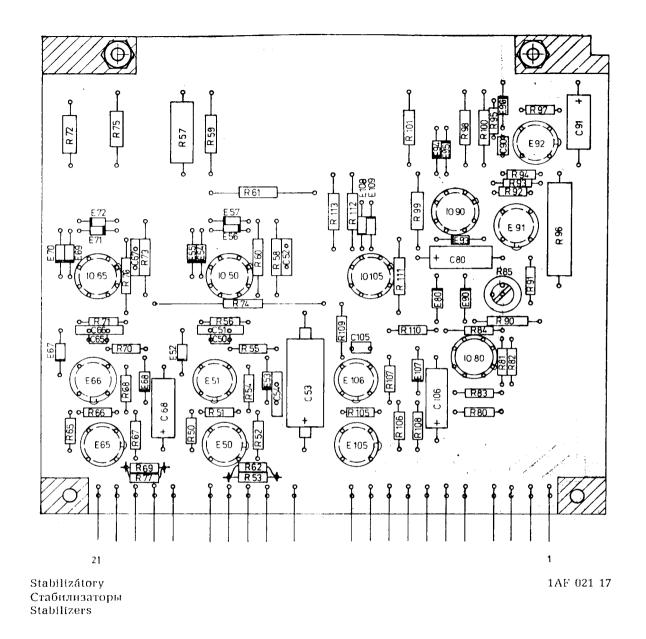
стр. 90 - Технические данные вонда ВР 7721 Входьая емкость: < 45 пФ + входная емкость осциллоскопа nerator is stopped. Fressing down the "AUI" pushbutton the constant current to emitters of E11 and E 12 substantially decreases. In this case the output of the whole stage 14 is switched over to H, immediately after applying the H level to gating input 10, regardless of triggering signal at bases of E 11 and E 12 transistors.


- page 47 Section 8.5.4 " Control amplifiers"- first paragraph: " from the control tunnel diode E 113 /E 15/" changes to: " from the shaping and control stage IO 1 / IO 101/ ". second paragraph - " The control tunnel diode is connected to the left-hand input" changes to: " The output of shaping and control stage is connected ... "
- page 52 Section 8.5.12 AND circuitsecond paragraph: " When the control tunnel diode E 113 ..." changes to: " When the shaping and control
 - third paragraph: "When the tunnel diode E 113..." changes to: "When the shaping and control stage IO 1 ... "

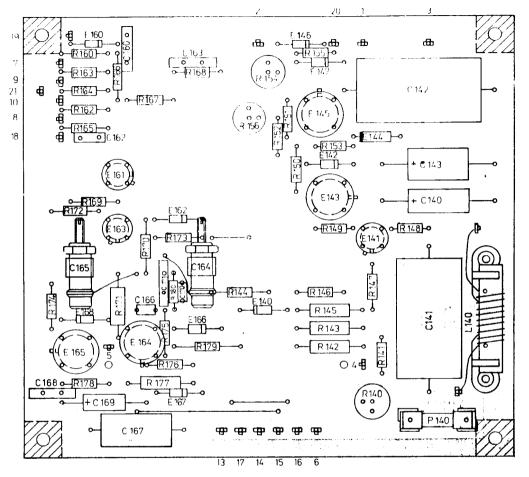
- 3 -


Montážní jednotka Монтажный блок Mounting unit

1AF 019 18

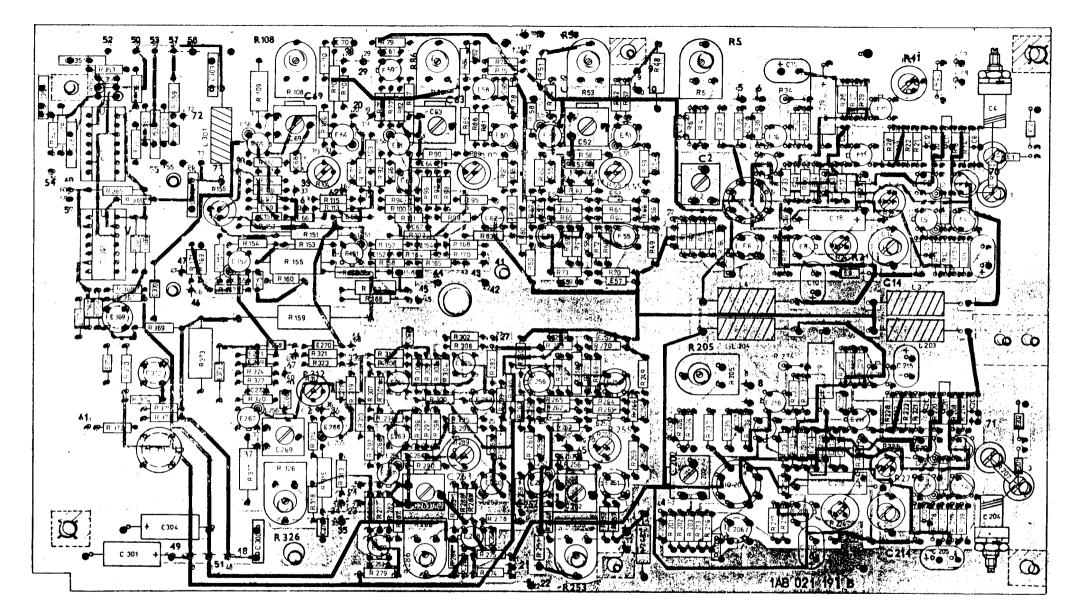

Kalibrátor Калибратор Calibrator

1AF 021 14 1

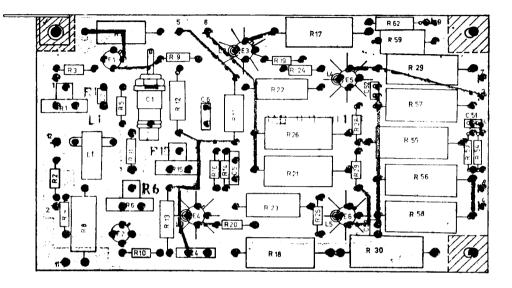


Montážní jednotka Монтажный блок Mounting unit 1AF 021 15

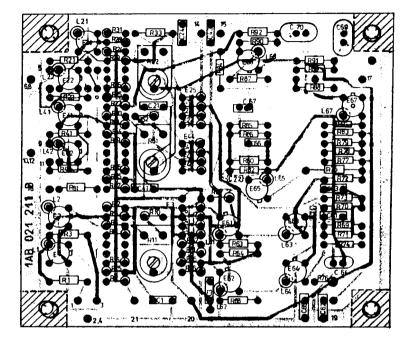
Montážní jednotka Монтажный блок Mounting unit 1AF 021 16



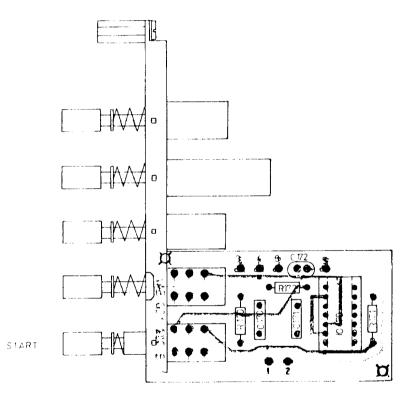
BM 566A/3


Z zesilovač Усилитель Z Amplifier

1AF 021 18



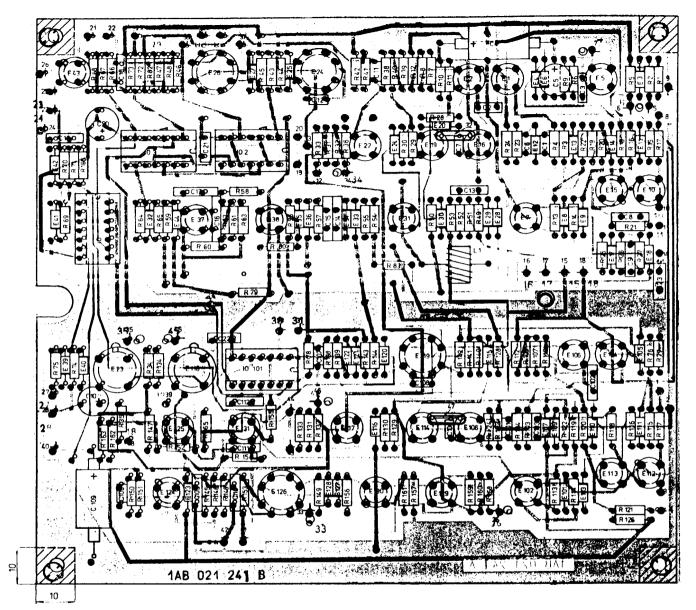
1AF 021 19


Koncový zesilovač Оконсчный усилитель Final amplifier

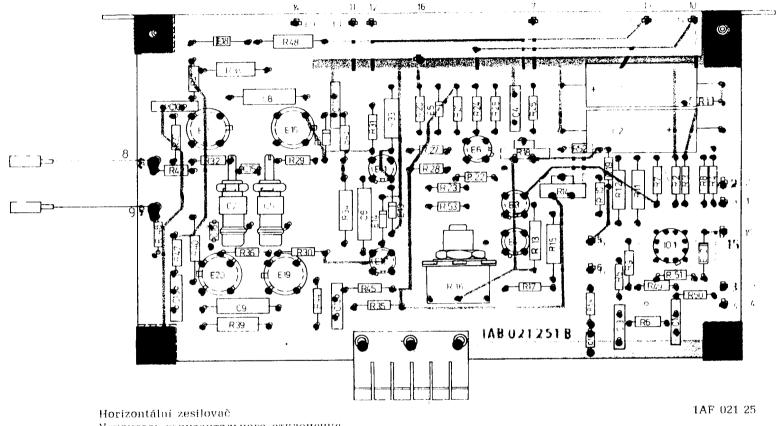
1AF 021 20

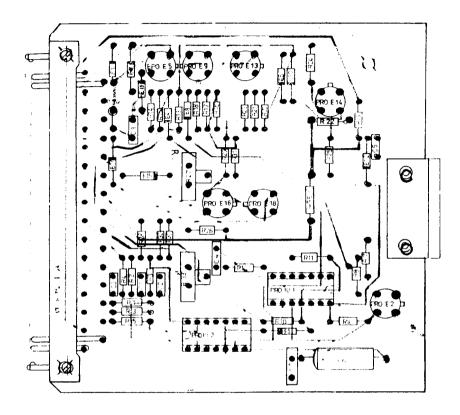

Synchronizační zesilovač Усилитель синхронизации Synchronizing amplifier

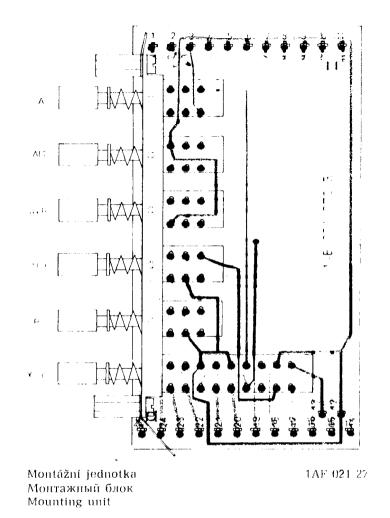
1AF 021 21

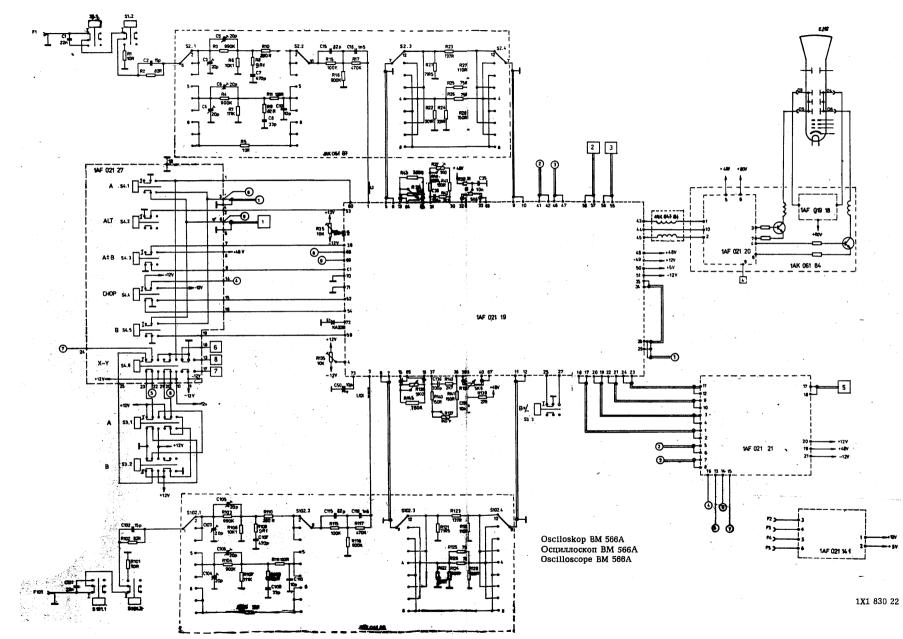


Přepínač funkcí Переключатель рода работ Function selector 1AF 021 22

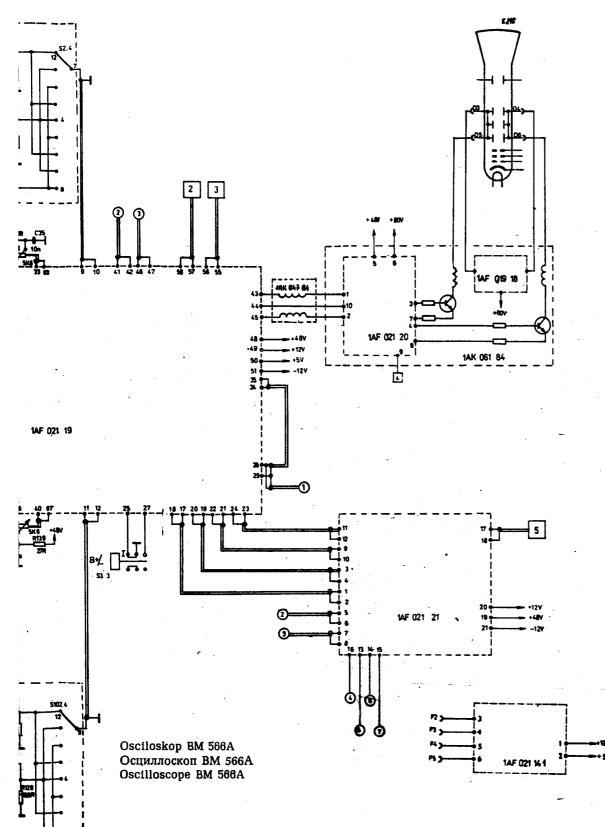

Spouštěcí obvody Схсмы запуска Triggering circuits


1AF 021 23 1

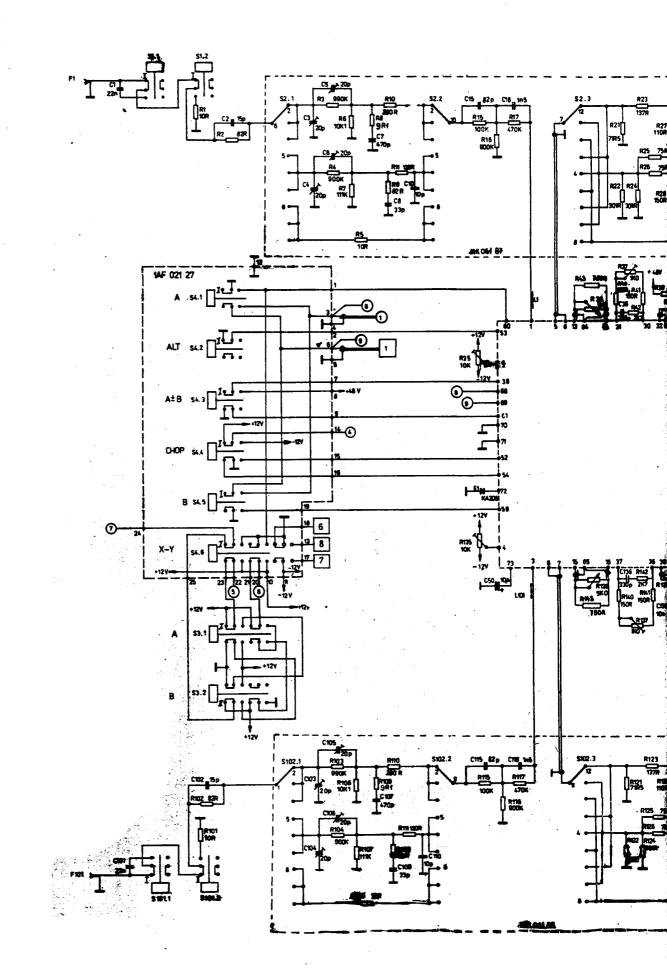

Rozmítací generátory Генераторы качающейся частоты Sweeping generators 1AF 021 24

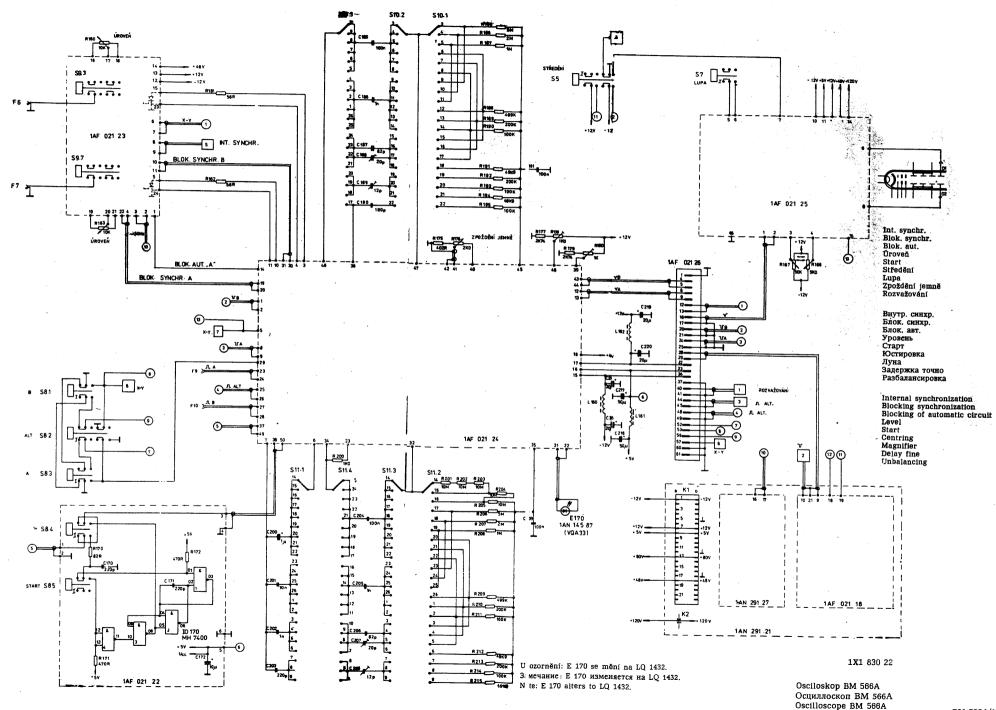


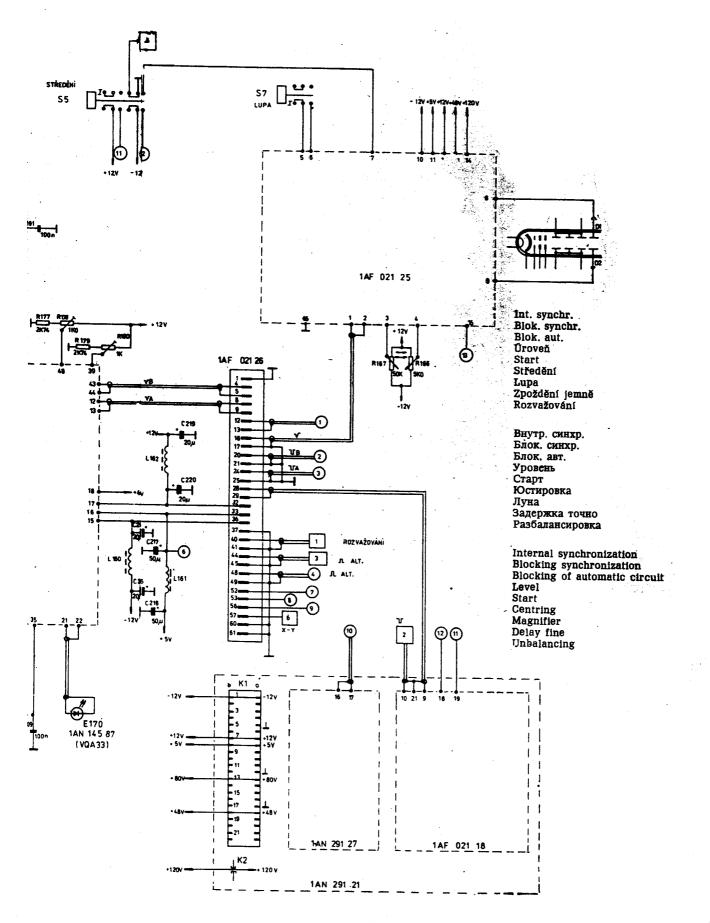
Horizontální zesilovač Усилитель горизонтального отклонені'я Horizontal amplifier



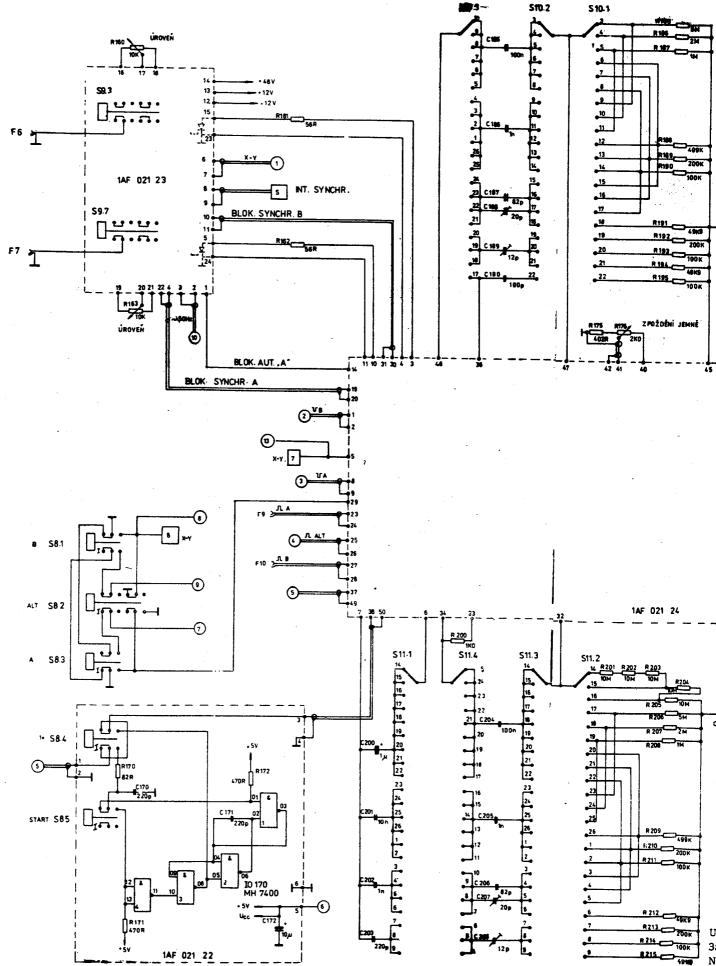
Řídicí obvod Схема управлення Control circuit 1AF 021 26

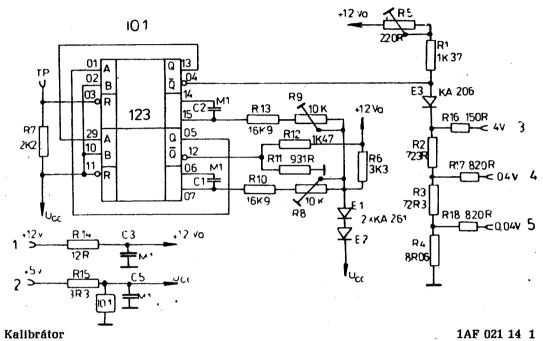






1X1 830 22



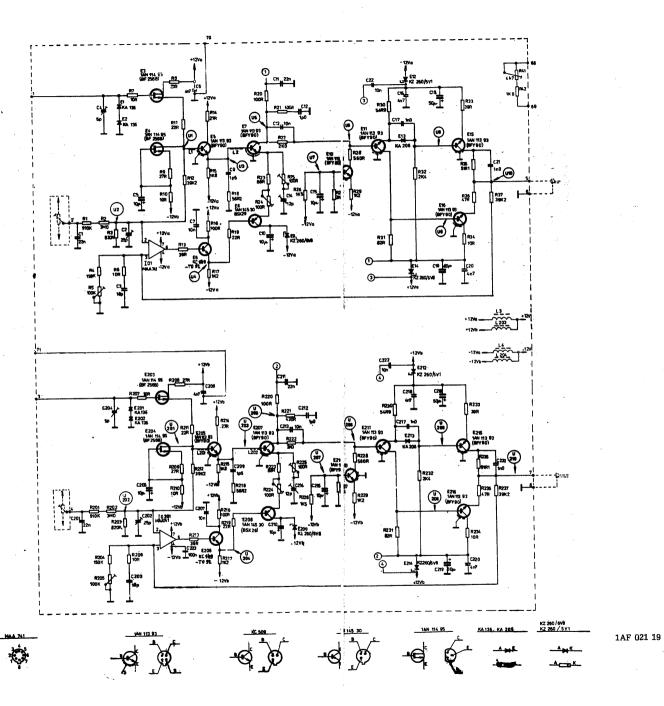


ozornění: E 170 se mění na LQ 1432. мечание: E 170 изменяется на LQ 1432. te: E 170 alters to LQ 1432. 1X1 830 22

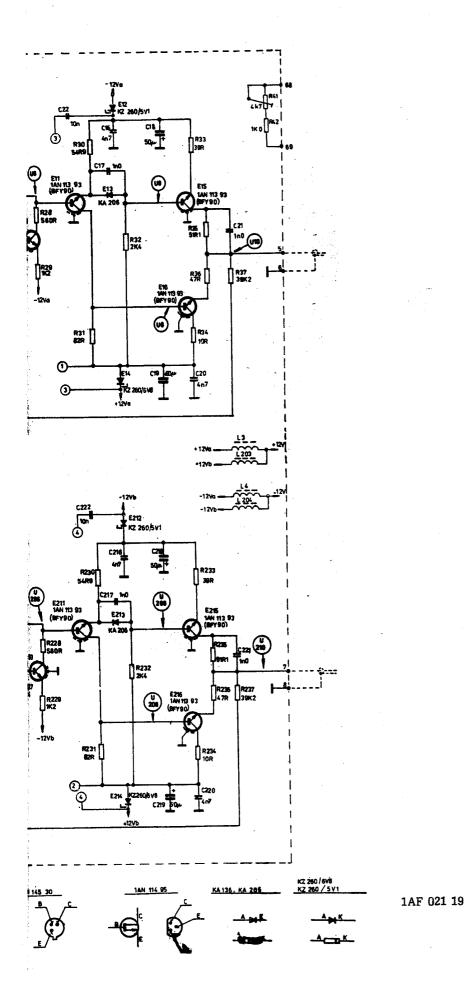
Osciloskop BM 566A Осциллоскоп BM 566A Oscilloscope BM 566A

N

Kalibrátor Калибратор Calibrator


.

Změna zapojení: u IO 1 (vývod č. 4) přistupuje kond. C24 — 100 n.

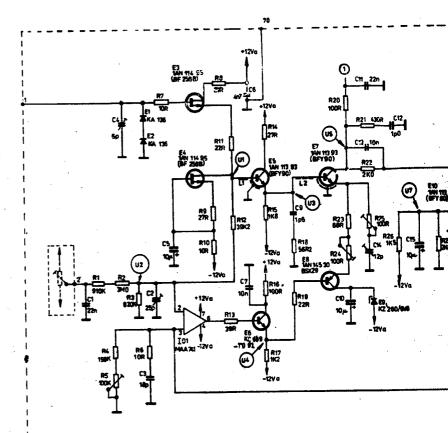

Изменение включений:

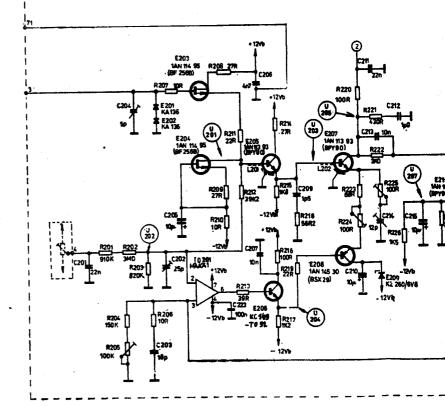
на IO 1 (выход № 4) подается конденсатор С24 — 0,1 мкф.

Alteration of circuitry: to IC 1 (outlet No. 4) condenser C 24 - 0.1 μ F is added.

Zesilovač Усилитель Amplifier

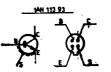
Změna zapojení:

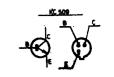

u IO 1 (vývod č. 4) přistupuje kond. C24 — 100 n.

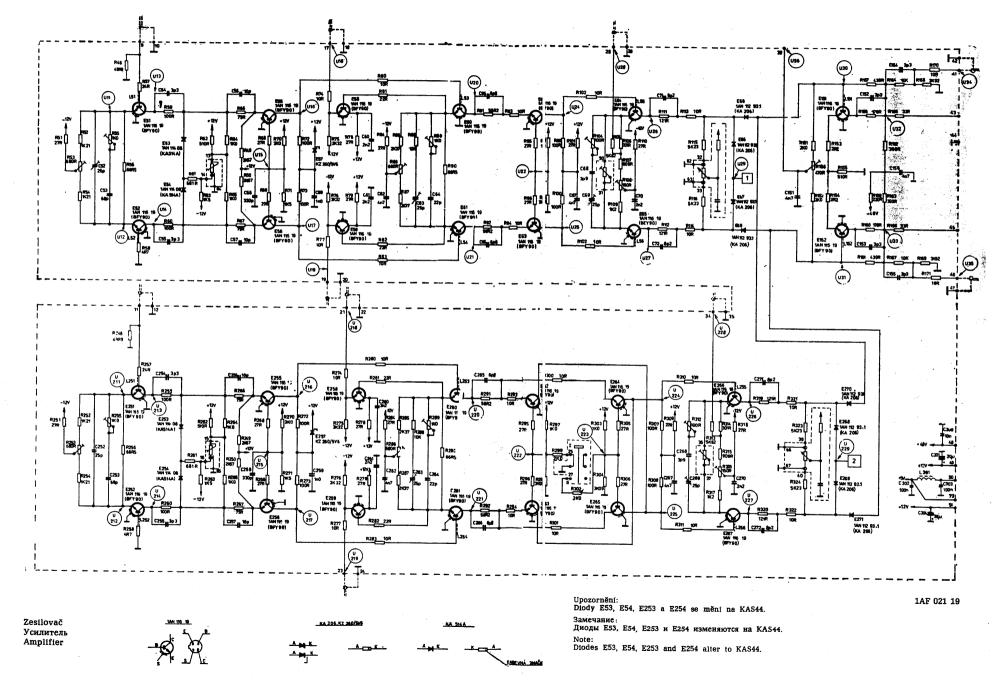

Изменение включений:

на IO 1 (выход № 4) подается конденсатор С24 — 0,1 мкф.

Alteration of circuitry:

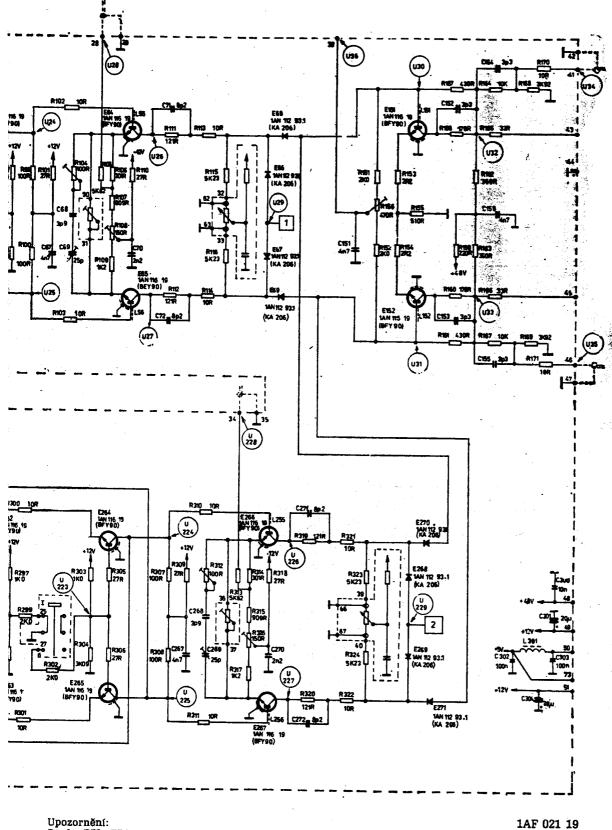

to IC 1 (outlet No. 4) condenser C 24 - 0.1 μ F is added.

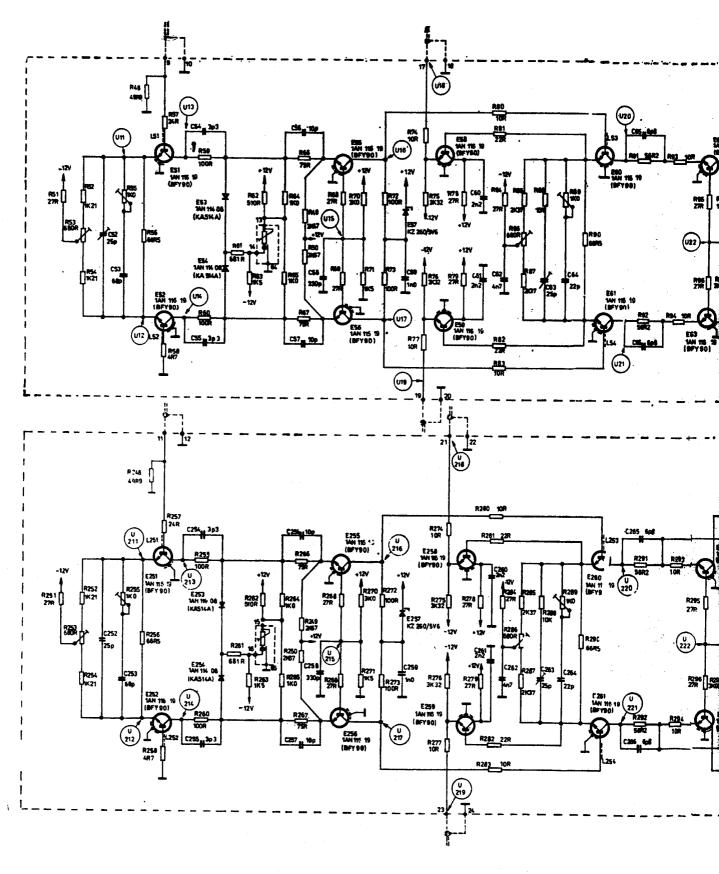




Zesilovač Усилитель Amplifier

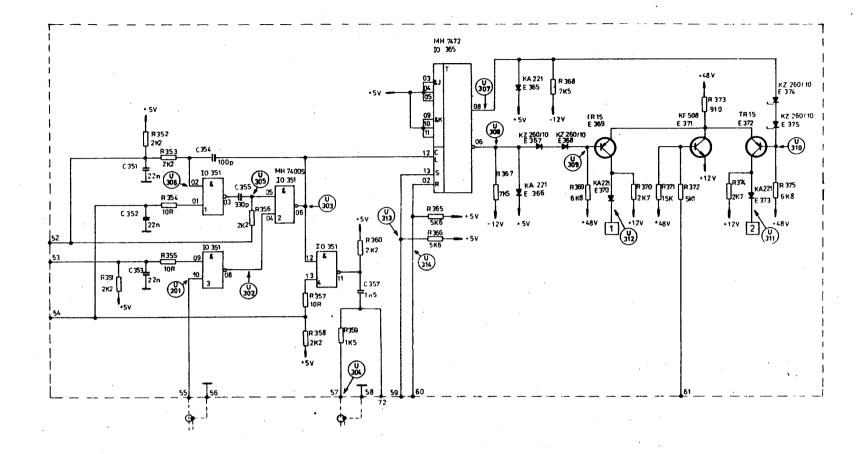
2





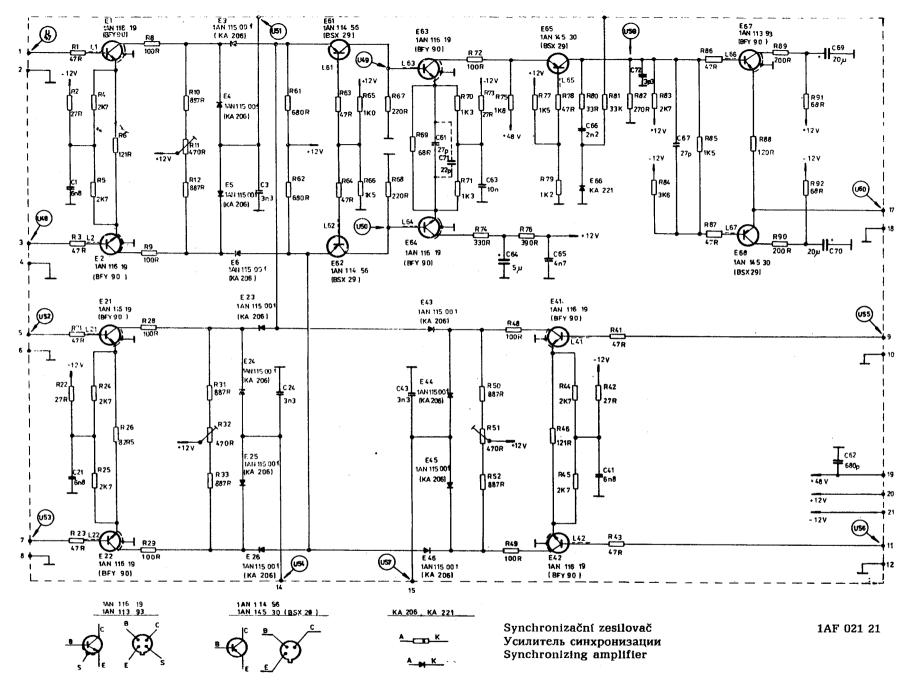
BM 586A/15

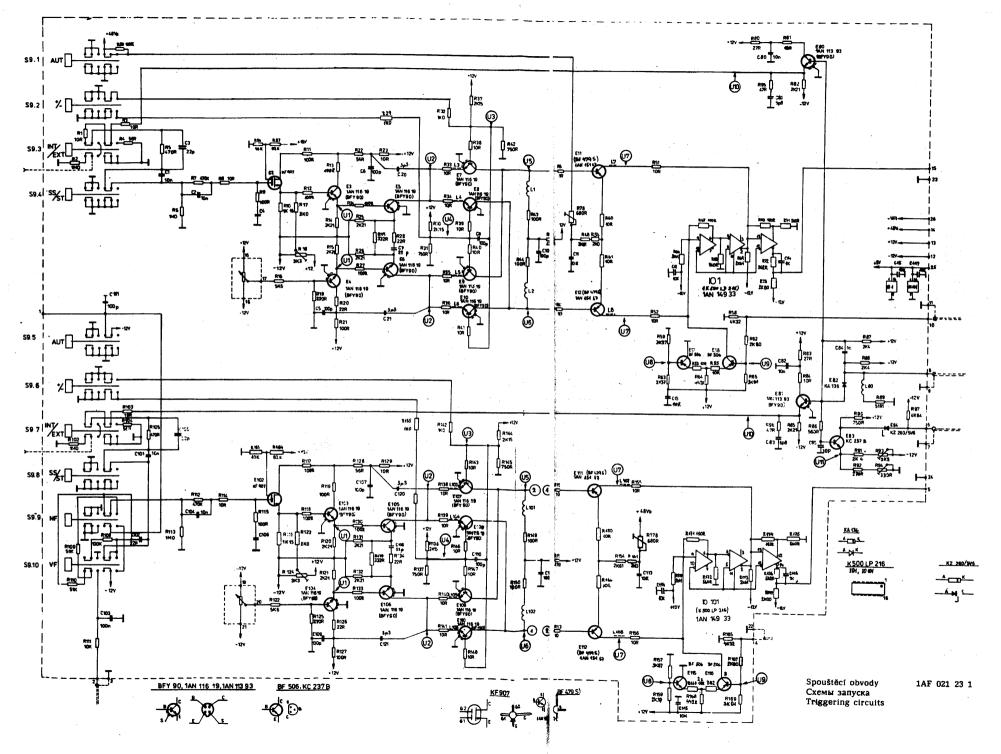
F

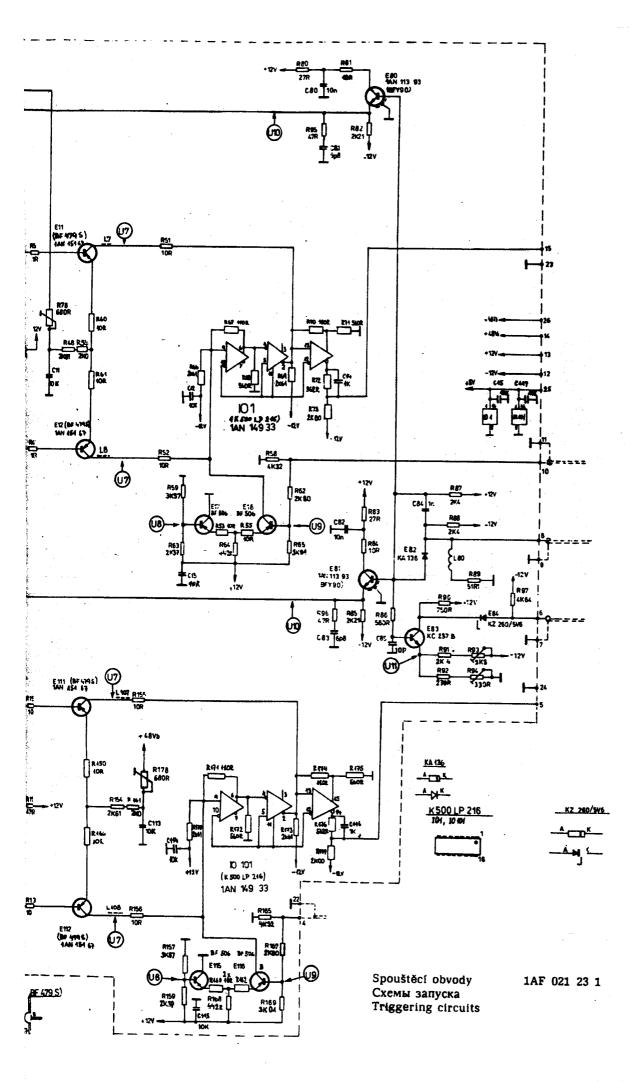

Upozornění: Diody E53, E54, E253 a E254 se mění na KAS44. Замечание: Диоды E53, E54, E253 и E254 изменяются на KAS44. Note: Diodes E53, E54, E253 and E254 alter to KAS44.

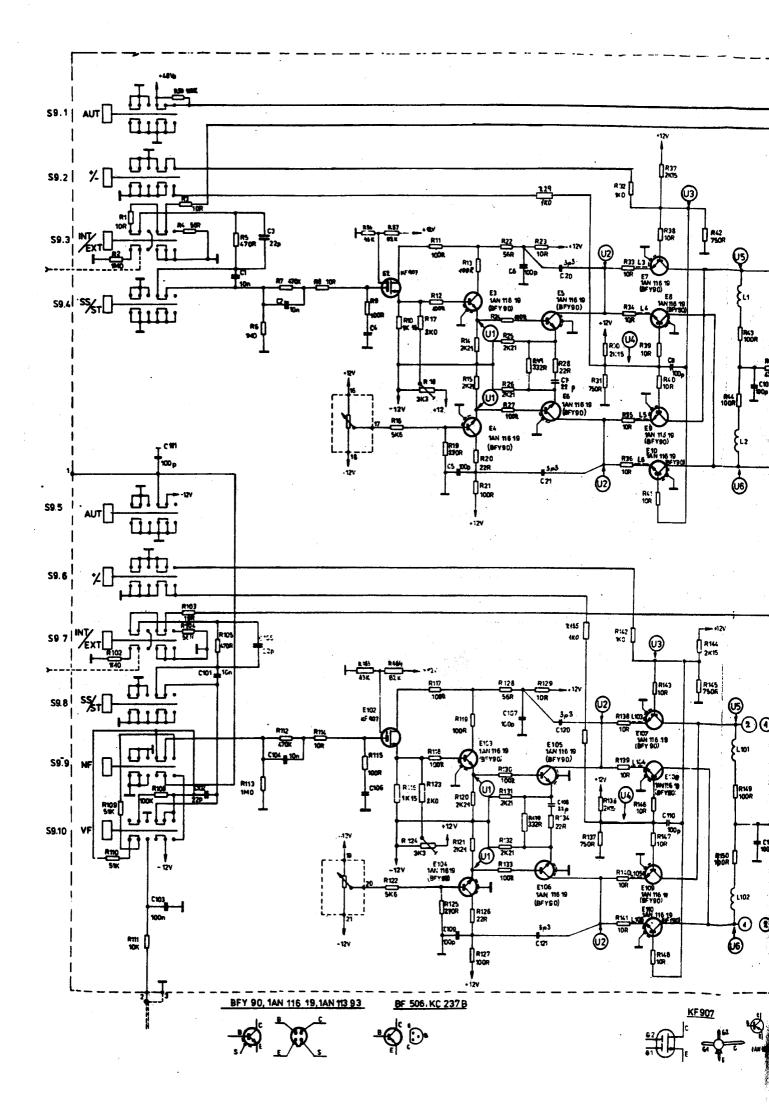
Zesilovač Усилитель Amplifier

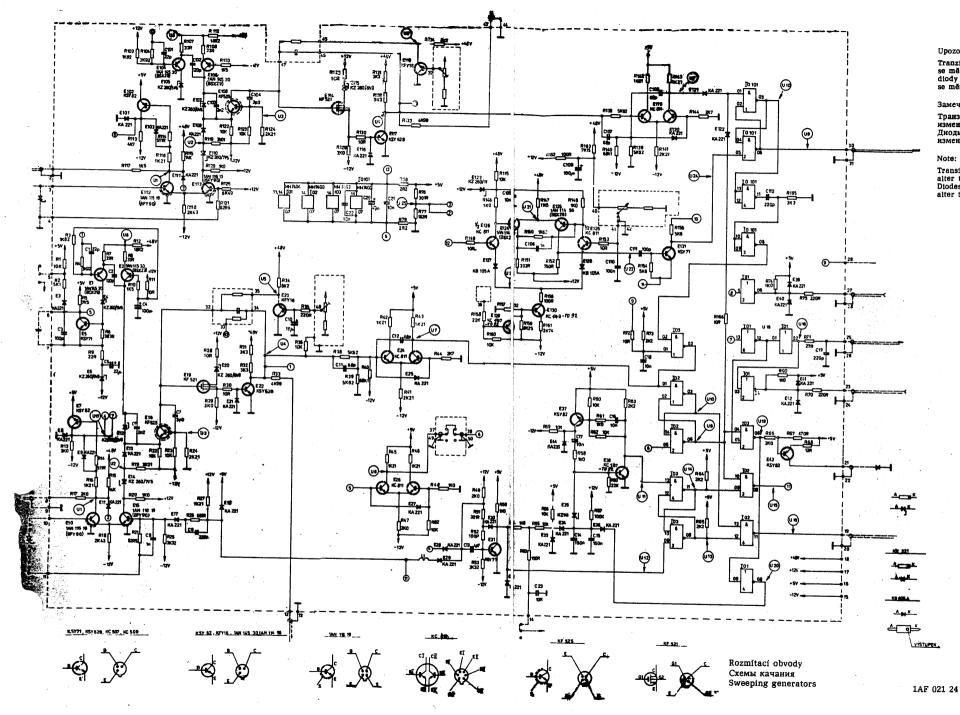
KF 508 TR 15


Zesilovač Усилитель Amplifier

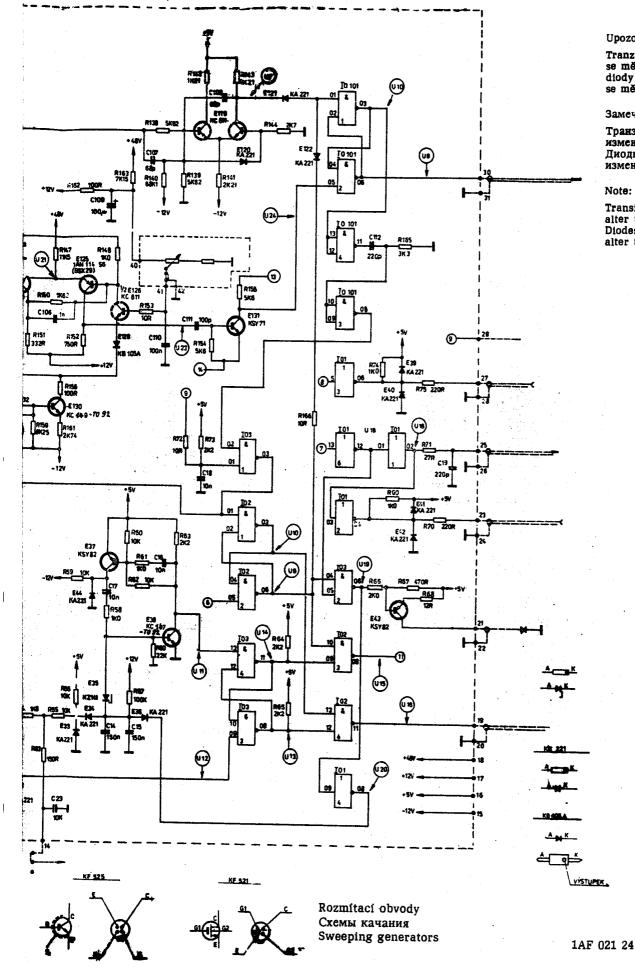

KA 221, KZ 260/10


A NK A MK


MH 74.72 MH 74.005


1AF 021 19

Upozornění:


Tranzistory E10, E11, E112 a E11 se mění na KF590; diody E127 a E128 se mění na KA206.

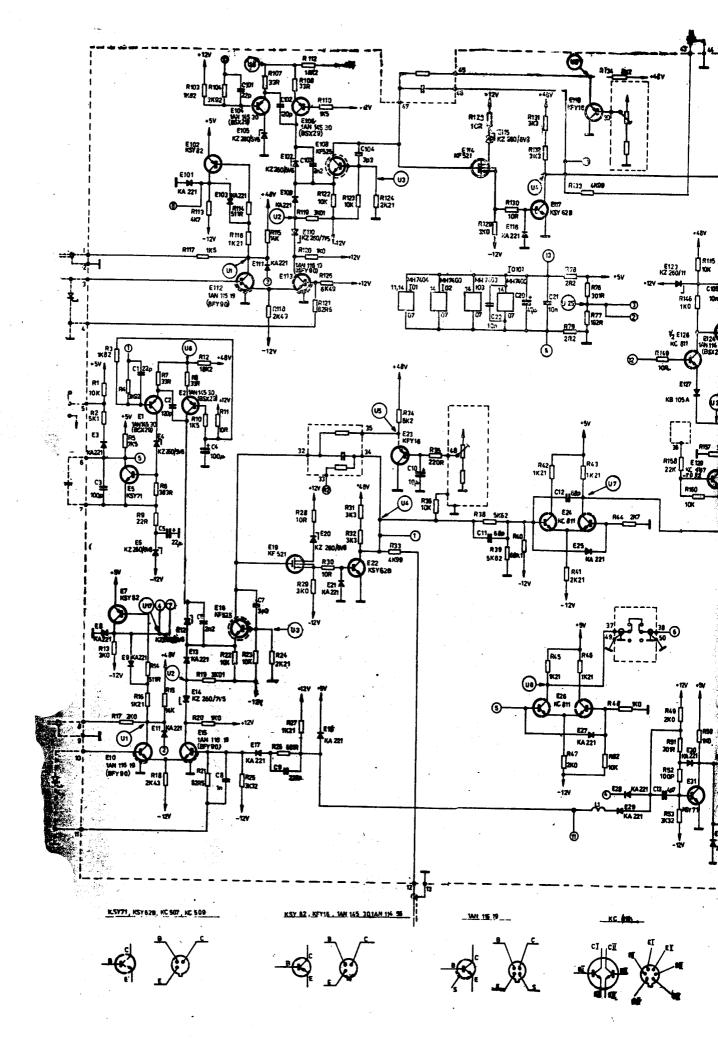
Замечание:

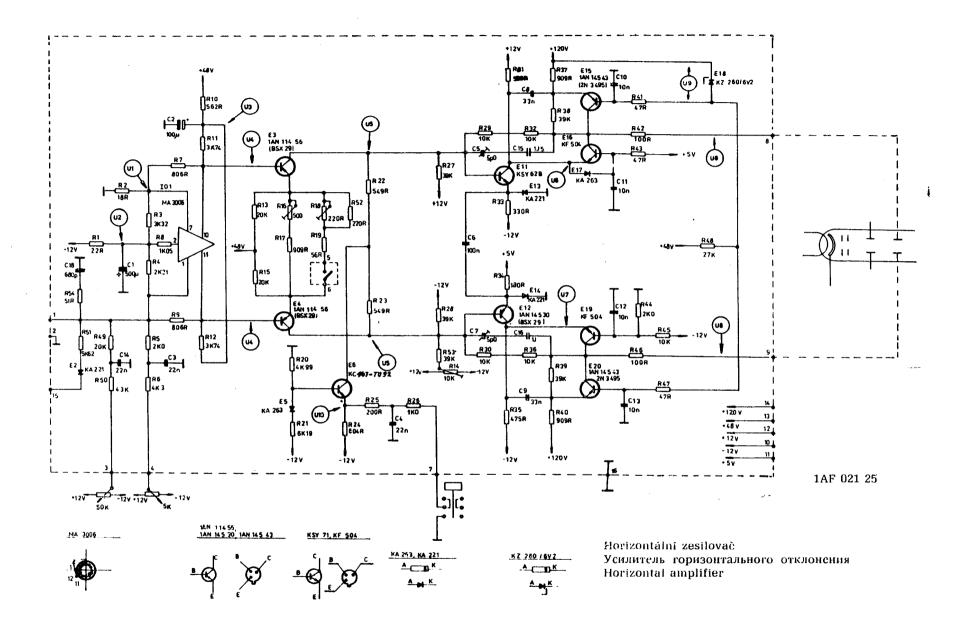
Транзисторы Е10, Е11, Е112 и н изменяются на КГ 590. Диоды Е127 и Е128 изменяются на КА206.

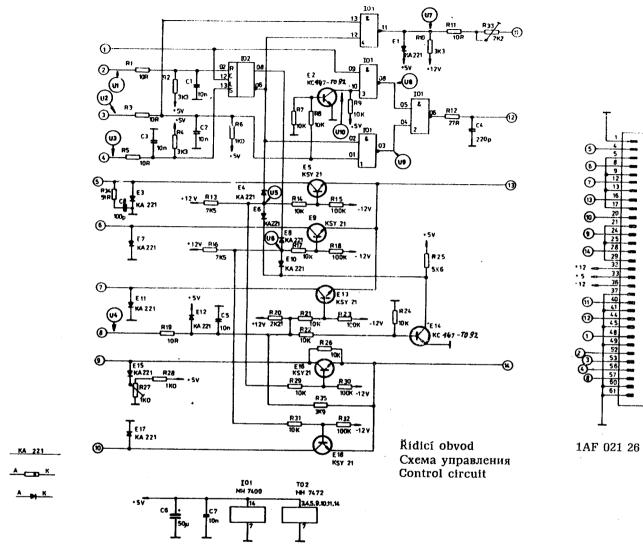
Note:

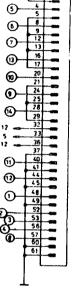
Transistors E10, E11, E112 and F alter to KF590. Diodes E127 and E128 alter to KA206.

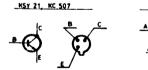
Upozornění:

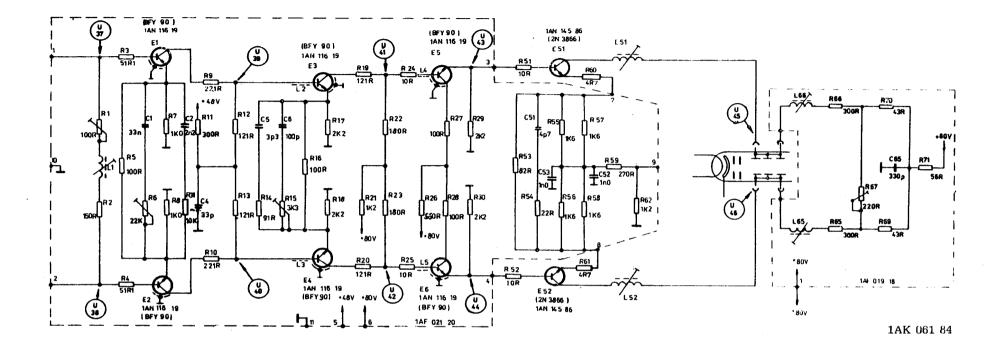

Tranzistory E10, E11, E112 a E11. se mění na KF590; diody E127 a E128 se mění na KA206.

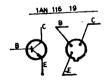

Замечание:

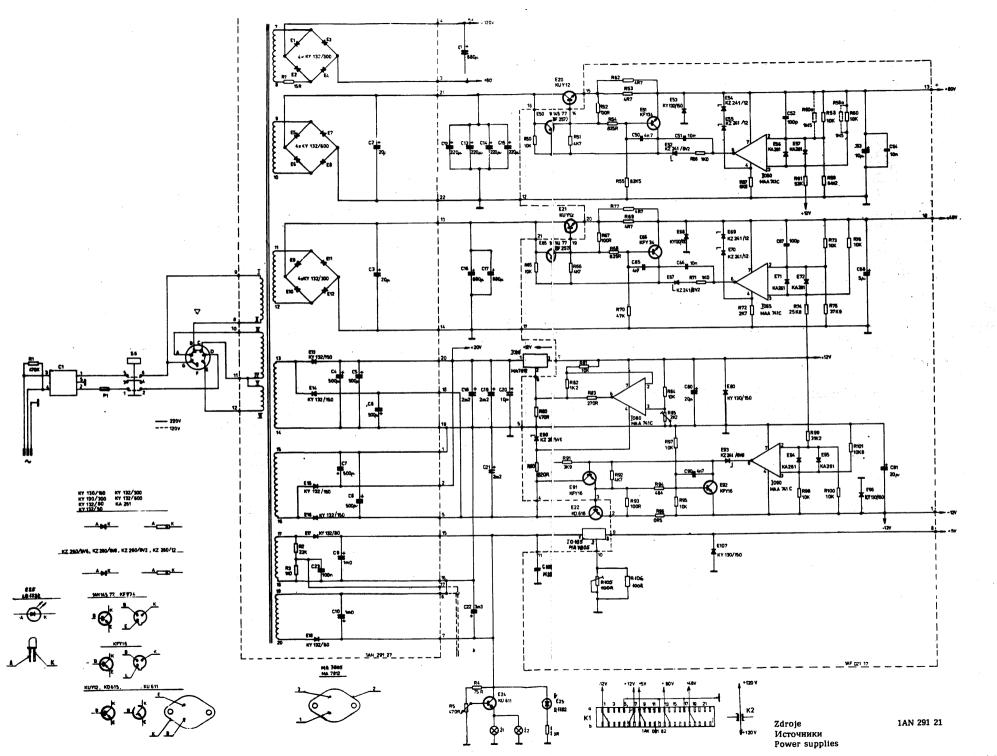

Транзисторы E10, E11, E112 и E изменяются на КГ 590. Диоды E127 и E128 изменяются на КА206.

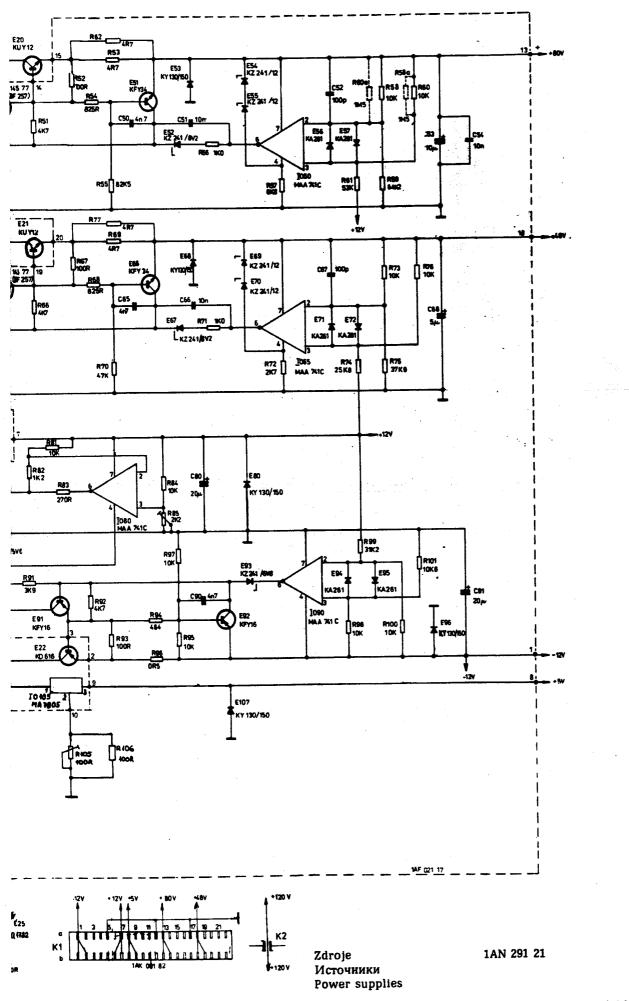

Note:

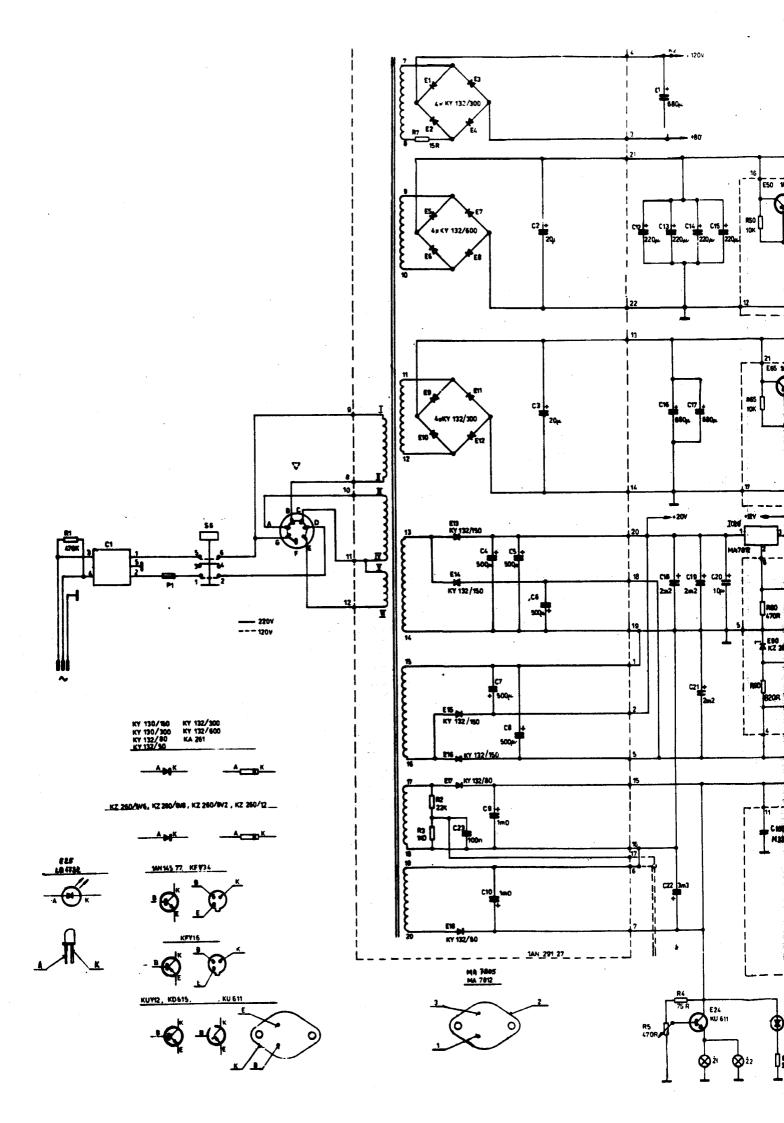

Transistors E10, E11, E112 and E alter to KF590. Diodes E127 and E128 alter to KA206.

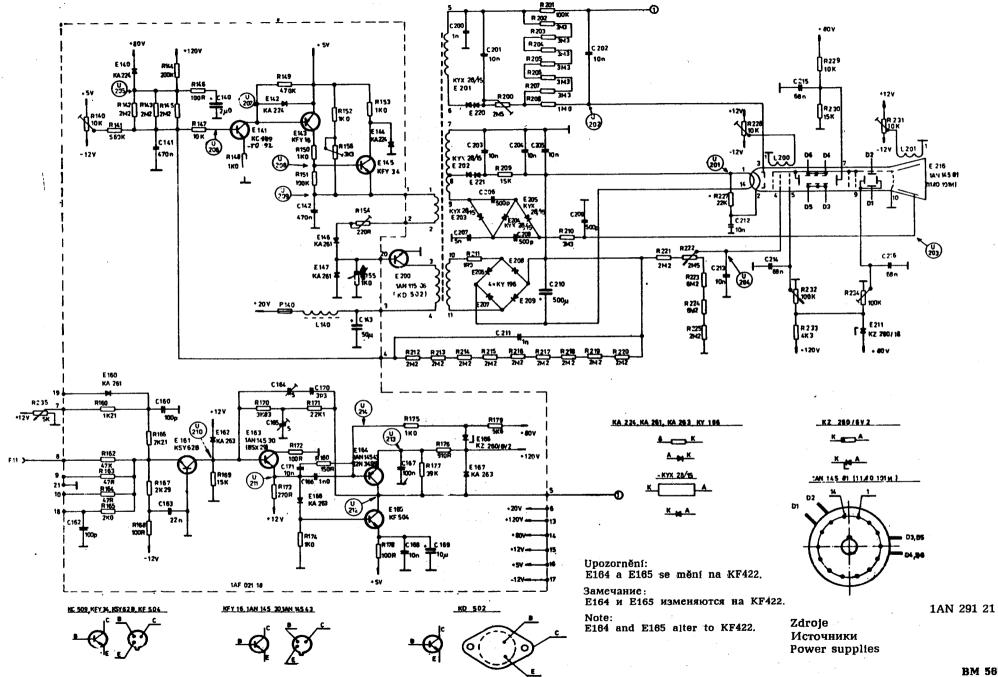



HH 7400 , MH 7472






Montážní jednotka Монтажный блок Mounting unit


.

